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Abstract

In many real-world applications today, it is critical to continuously record and monitor cer-
tain machine or system health indicators in order to discover malfunctions or other abnormal
behavior at an early stage and prevent potential harm. The demand for such reliable mon-
itoring systems is expected to increase in the coming years. Particularly in the industrial
context, in the course of ongoing digitization, it is becoming increasingly important to ana-
lyze growing volumes of data in an automated manner using state-of-the-art algorithms. In
many practical applications, one has to deal with temporal data in the form of data streams
or time series. The problem of detecting unusual (or anomalous) behavior in time series
is commonly referred to as time series anomaly detection. Anomalies are events observed
in the data that do not conform to the normal or expected behavior when viewed in their
temporal context.
In the era of ’industry 4.0’, ’cyber-physical systems’ and ’big data’, data-driven AI (artificial
intelligence) approaches (designed to learn solely through data) from the fields of machine
learning (ML), or deep learning (DL) – a sub-field of ML – have gained tremendous popu-
larity. The majority of ML models are trained in a supervised fashion and require a labeled
training data set. However, a particular problem in (time series) anomaly detection is that
labeled data are usually relatively sparse and, as a consequence, supervised learning meth-
ods are mostly not feasible.
This thesis focuses on unsupervised machine learning algorithms for anomaly detection in
time series. In an unsupervised learning setup, a model attempts to learn the normal be-
havior in a time series – which might already be contaminated with anomalies – without
any external assistance. The model can then use its learned notion of normality to detect
anomalous events. This work presents four unsupervised anomaly detection algorithms for
multivariate time series, which can be used in different contexts: 1. SORAD learns an au-
toregressive prediction model and maintains a distribution of the prediction errors to detect
anomalies. It can operate fully online and is up-and-running after a very short transient
phase. Due to its online adaptability, it is advantageous for non-stationary time series. 2.
DWT-MLEAD uses discrete wavelet transforms (DWT) to analyze a time series signal at
different frequency scales to detect short-range and longer-range anomalies. It is also online-
adaptable and computationally efficient. 3. LSTM-AD is a DL approach designed for longer
time series, which uses a stack of recurrent long short-term memory (LSTM) neural net-
works to predict normal time-series behavior. Due to several extensions, it is particularly
well-suited for quasi-periodic time series. 4. TCN-AE is a deep temporal autoencoder ar-
chitecture, which – similarly to DWT-MLEAD – analyzes time series at different frequency
scales and can learn short- and long-term relationships. It uses so-called dilated convolu-
tional layers with learnable filters. TCN-AE is usually more compact in terms of model size
than other DL models and can be trained faster due to its convolutional architecture.
We evaluate the algorithms presented in this work on challenging synthetic and real-world
time series anomaly detection benchmarks, such as Mackey-Glass time series or electrocar-
diogram recordings, and compare them to other state-of-the-art algorithms.
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Chapter 1

Introduction

1.1 Background & Motivation

We often find ourselves in situations that seem unusual to us, and we get surprised by
events or observations that do not seem to correspond to our expectations. But what is the
reason for us reacting surprised? One possible explanation could be that we get used to
continually recurring events and observations and memorize (although often not consciously)
the relevant patterns that characterize them. Due to our cognitive abilities, we can process
new information, match it with already existing patterns in our memory, and formulate
predictions or expectations based on it (usually, also subconsciously). And as long as the
new information matches our expectations, everything is fine. But as soon as we observe
a new piece of information containing patterns that deviate from the norm, we run into
a moment of surprise because we cannot connect these new patterns to the information
stored in our long-term memory and our expectations (built up in repeated experiences)
are not met. Oddly enough, we can – in many cases – naturally learn to identify what is
novel or unusual without requiring any form of external assistance. As we will see later
in the context of learning algorithms, this characteristic is often linked to a concept called
”unsupervised learning”. Our ability to identify the unusual helps us to cope with our daily
life. Often, an unusual situation is also associated with a certain degree of concern for us,
and we understand the situation as a warning of an impending problem.

Ignoring unusual or unexpected observations may have fatal consequences. In 1998, a
high-speed train derailed and crashed into a bridge near the town of Eschede in Germany,
causing the death of 101 people [42]. The accident’s leading cause (followed by a sequence
of unfortunate events) was a fatigue crack in one of the train’s wheels, which was not
discovered during inspections of the train in the weeks prior to the accident. Remarkably,
already two months before the crash, several train staff members noticed and reported
unusual noises and vibrations in the train compartment with the defective wheel – however,
the complaints were not considered a safety issue. And although train wheels had been
previously inspected with advanced testing devices, by 1998, the equipment was no longer
in use due to its high false alarm rates (we will call these alarms false-positive errors and
discuss the issue of false alarms in more detail later on). Instead, maintenance staff only
performed visual inspections of the wheels with simple flashlights, which would not allow
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1.1. BACKGROUND & MOTIVATION
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Figure 1.1: An example time series taken from the Numenta Anomaly Benchmark (NAB) [89].The graph
shows the temperature sensor data of an internal component of a large industrial machine over its last few
months of operation. The second anomaly (mid of December) is a planned shutdown of the machine. The
catastrophic failure occurs end of February when the recordings end.

detecting fatigue cracks reliably. In the aftermath, it was discussed how microphones
usage, in particular, could have possibly prevented the crash [10]. Today, so-called wayside
monitoring points have been installed across the German rail network, which monitor
passing trains with acoustic, optic, and other sensors and, for example, check the noise of
passing trains for irregular patterns [38].

The previous example highlights the necessity of monitoring critical systems and detect-
ing and responding appropriately to unexpected or abnormal behavior at an early stage
in order to prevent failure and consequential damage. Similar to the wayside monitoring
points mentioned before, many critical systems such as IT infrastructures, industrial ma-
chines, or power plants can be equipped with specialized sensors and software to record
relevant health indicators and detect abnormal behavior. If the monitored data is visual-
ized/presented appropriately, one could manually inspect the recorded data. An example is
given in Figure 1.1, where one health indicator (temperature) of a large industrial machine
is plotted over time. Although not all readers will have sufficient background knowledge
about the monitored machine, most will spot at least two points in time that appear to
deviate from the norm significantly.

However, while in the past, one could rely on humans’ aforementioned extraordinary
capabilities to analyze data and to recognize unusual and possibly problematic patterns,
this has become increasingly challenging in recent years.
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For example, one major challenge in many domains is the enormous amounts of data
that have to be processed continuously. In the past years, we could observe the increasing
degree of digitalization in companies and their processes, households, and many other public
institutions and an extensive interconnection of systems. Today, companies are equipping
even the smallest devices with sensors that consistently supply various measurements and
other indicators. New technologies for the internet of things, cyber-physical systems (CPS),
and other related domains enable manufacturers to equip such devices with considerable
computing power, networking capabilities, and numerous sensors. These devices can
consistently record and distribute various measurements and other information. The sheer
endless amount of data and its inherent complexity can even overwhelm experienced human
experts when analyzing and interpreting it manually. For this reason, among others,
the necessity for automated, intelligent, and adaptable analytical approaches arose, and
researchers invested much effort into developing new methods and algorithms. Especially
in the field of machine learning (ML), the research community has made notable progress
in recent years. In particular, deep learning (DL) – a subfield of ML – has recently received
much interest. Essentially, machine learning is the generic term for computer algorithms
designed to learn solely through data. There is no need for programming hard-coded
rules into a model. Instead, an ML model is trained with a set of examples (the so-called
training data set) and autonomously learns to identify the intricate underlying patterns
within the data, which later allows the model to generalize to examples it has not seen before.

While ML/DL models can be and are used in a wide range of applications, such as
computer vision[174], natural language processing (NLP) [125], or general game playing
(GGP) [155], in this thesis, we will focus on one particular task in ML, which is concerned
with the detection of unusual events in time series. In the scientific literature, this task is
commonly referred to as time series anomaly detection.

1.1.1 Introduction to Time Series Anomaly Detection

Generally, there is no clear definition of the term ”anomaly” since the categorization into
anomalous or normal is heavily dependent on the application domain and the problem
context. The Oxford Language dictionary defines an anomaly as

”something that deviates from what is standard, normal, or expected” [126].
Other (similar) definitions can be found in [26, 64, 23]. In the literature, also the terms
outlier detection, novelty detection or sometimes abnormality detection can be found. Es-
pecially the term ”outlier detection” is often used synonymously with ”anomaly detection”.
While this understanding might be reasonable in many domains, especially in the time series
analysis domain, which is the main focus of this work, the notion of anomaly and outlier is
mostly different: outliers are single points that deviate significantly from all other points in
the time series. Outliers are typically considered as single-point anomalies. However, not all
anomalies in time series are outliers. Most anomalies in time series are temporal patterns
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– containing a range of points – that are unusual given their temporal context. A possible
definition that considers the temporal aspect of time series and which might be useful for
this work is:

An anomaly is an observed pattern that, when viewed in its temporal context, does not
conform to the normal or expected behavior due to its characteristics.

There is a wide range of possible applications for time series anomaly detection: As al-
ready mentioned, an important application is system health monitoring, and fault detection,
which is, for example, often embedded in predictive maintenance (PdM) approaches [119].
Other relevant applications are intrusion detection systems, patient monitoring systems in
medical domains, or event detection in sensor networks [26]. This thesis will focus less on
the details of different application domains of anomaly detection algorithms. Instead, as
discussed in more detail below, this thesis aims to investigate more general aspects of time
series anomaly detection. Nevertheless, we will investigate a few examples coming from
some of the domains mentioned above.

1.1.2 Challenges

Up till today, anomaly detection in general and more specifically in time series has remained
a complicated task. There are several challenges in the field of time series anomaly detection,
which we believe are still not sufficiently addressed in the literature:

Availability of labeled data Many machine learning approaches require so-called labeled
(annotated) data for their training to learn a general model that can later predict the
outputs for new inputs. In these cases, the training algorithm processes examples with
pairs consisting of an input and the desired output. After training (during the inference
phase), the model can predict the unknown outputs for new given inputs. Since a ”teacher”
or ”supervisor” is needed to pass the desired outputs to the training algorithm, this type
of learning is called supervised learning. In the context of time series anomaly detection,
”labeled data” means that each data point in a time series has been classified as either
normal or anomalous by a domain expert. However, in a vast amount of real-world anomaly
detection problems, no or insufficient labeled data exists. This increases the difficulty of the
training and benchmarking of anomaly detection algorithms. One reason for this situation
is that the data set’s annotation process is usually very cumbersome and expensive; a
human expert has to analyze and judge every piece of data. Since most anomalies in time
series are not single points but longer sub-sequences, a particular problem in the annotation
process is to identify the anomalous regions. Often, it is not evident at which instance
of time an anomaly begins and where it ends. While large publicly available datasets for
benchmarking new methods are available in other domains, such as visual object recognition
(ImageNet [37], Open Images [84]), the amount of benchmark data for time series anomaly
detection is somewhat limited.
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Anomalies are rare events Another critical challenge for many anomaly detection prob-
lems is the simple fact that anomalies are rare events. Even if large amounts of data are
available, they will mostly represent normal (nominal) instances. Due to the high class-
imbalance (many examples which are normal and only very few which are anomalous), it is
hard to train a supervised machine learning model.
An alternative machine learning type is so-called unsupervised learning. No annotations
are needed in such setups, and the algorithms attempt to learn patterns and structure in
the data without external supervision.

Finding suitable boundaries between normal and anomalous behavior In many
applications, it is not trivial to define where to draw the line between normal and anoma-
lous behavior. Especially since anomalies are only encountered very rarely, algorithms do
not have many examples (sometimes not any examples at all) in order to learn a decision
boundary. A common problem is that not all anomalous patterns which might occur can be
known beforehand, and almost every anomaly has a unique pattern or fingerprint. Often,
models are trained under the assumption that the data only contains normal behavior. The
models attempt to learn a boundary that surrounds this presumably normal data. This task
is often referred to as one-class classification [114] and is considered more difficult than other
classification tasks. In practice, the data itself usually contains noise, and also the suppos-
edly normal data is regularly ”contaminated” with anomalies, which adds extra complexity
to the learning task.

Non-stationary environments In many real-world problems, one has to deal with en-
vironments which dynamically change over time. Such environments undergo so-called con-
cept drifts or concept changes [47, 170, 177], where certain statistical properties of variables
continuously change over time. Time series with constantly changing means, variances, or
trends are simple examples of such behavior. In practice, one often encounters dynamically
changing time series in which also the regions of normality/abnormality permanently change
over time. The challenge for anomaly detection algorithms is progressively updating their
models, generalizing the data, and adapting their understanding of normality/abnormality.
Especially if an algorithm has to operate on a data stream, the necessity arises to adapt
quasi ”on-the-fly” to new situations or concepts. Machine learning tasks involving such
streaming data are considered rather challenging since many classical learning approaches
are not applicable due to their offline character: offline learning algorithms are trained on
a static batch of data. They require a complete repetition of the training procedure if new
examples are added to the data set. Due to memory and time constraints, such approaches
are typically infeasible for problems with streaming data. In such cases, it is necessary
to operate in an online (an extreme case is ”in real-time”, which adds time constraints to
the problem) setting on the data and process the data in an example-by-example manner
and incrementally learn from every new example, without re-training a completely new
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model each time. However, online approaches are associated with several additional new
challenges, as discussed in the next chapter(s).

High false alarm rates Since the misclassification of true anomalies in the real-world
usually is associated with severe consequences, most anomaly detection algorithms are con-
figured very sensitively. In effect, the algorithms will trigger many alarms and are thus much
more likely to classify normal data points as anomalous. A normal data point incorrectly
classified as anomalous is called false positive. Since all alarms have to be investigated in
real-world applications, false alarms cause much overhead (e.g., for machine operators). It
might also happen that the responsible persons become less attentive and, as a consequence,
ignore actual anomalous situations. If the false-positive rate gets too large, the expected
beneficial effect of the anomaly detection algorithm has to be questioned. As described
in the example mentioned earlier about the tragic derailment accident in Eschede, the use
of advanced technical equipment for testing train wheels was discontinued since too many
false-positive errors were reported.

High-dimensional Time Series While many might consider the detection of anomalies
in univariate (1-dimensional) time series as relatively simple, the detection in their multivari-
ate counterparts is typically of tremendous complexity since anomalies cannot be identified
in individual series generally. Many anomalies only become apparent by analyzing the time
series in all dimensions simultaneously. In other cases, the anomalous patterns range over
very few or even only one dimension. However, they are very hard to spot since they are
embedded in a high-dimensional space. While it might be possible to perform the anomaly
detection in reduced lower-dimensional space for the latter case, it is much more challenging
to detect high-dimensional temporal anomalies.

1.1.3 Underlying Research Questions

Based on the aforementioned challenges in anomaly detection, we motivate the work in this
thesis with the following central research questions:

Q1: Is it possible to successfully train and apply novel unsupervised machine learning
models for anomaly detection and do they advance the state of the art?

This first research question is very general and will accompany us throughout the thesis.
There are several sub-questions and assumptions linked to this question. For example,
how can ”successful” be quantified? The following chapter will describe several well-known
performance measures (such as the F1-score) which indicate an algorithm’s performance
on an individual time series or even a whole set of time series. By ”successful”, we mean
achieving a performance (according to the specified measures) at least similar to other
(unsupervised) state-of-the-art algorithms, ideally even surpassing them.
A central point of this work will be the investigation of unsupervised approaches. We will
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assume that the training data is not annotated (no anomaly labels will be passed to the
algorithms). Only for assessing the performance, the real anomaly labels will be used.
We will make the mild assumption that the majority of the training data contains normal
instances and that anomalies are relatively rare. However, if not mentioned otherwise, we
will not remove any anomalies (or other noisy instances) from the training data, which
increases the difficulty of learning and requires noise-resilient algorithms.
Although mentioned before, another aspect that should be highlighted again is the al-
gorithms’ requirement to operate on higher-dimensional time series. Considering the
inherently temporal nature of the considered data and the multidimensionality increases
the anomaly detection task significantly.

Q2: Given certain characteristics of the time series data, can we advise which algo-
rithm is most suited for detecting anomalies?

The second research question is a continuation of the first one. However, it focuses on
whether it is possible to classify time series according to various properties and subsequently
recommend which anomaly detection algorithm is likely to work best for the given problem.
In an ideal case, one unique algorithm can be found that is applicable to a wide range of
time series and outperforms all other algorithms on the considered problems. However, since
this question is framed particularly in light of the data’s complex temporal nature and great
diversity, it is unlikely that a universally good method exists which performs equally well
on all kinds of time series data. For example, such an algorithm would have to be able to
deal with complex short- and long-term patterns, with periodic (seasonal) or quasi-periodic
behavior and predictable or unpredictable time series. In order to answer this research
question, it is necessary to identify distinct characteristics of different time series and find
algorithmic approaches to address them.

Q3: How can online learning methods be successfully used for anomaly detection in
time series or data streams?

This last research question especially (but not exclusively) addresses problems with non-
stationary environments. It has to be investigated how to design online algorithms that can
incrementally adapt to new concepts in the data and learn the new notion of ”normal”. A
particular challenge in online setups is the so-called stability-plasticity dilemma [21]: The
learning process requires stability in order to protect the already acquired knowledge, but
also plasticity, for the integration of new knowledge. A suitable balance has to be found to
prevent that too much plasticity causes catastrophic forgetting on the one hand and that
too much stability hinders the model from learning new concepts.

In the following chapters, we will address these research questions and propose several
approaches in an attempt to answer these questions.
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1.2 Thesis Outline

Chapter 2 gives an overview of the state of the art in the field of time series anomaly
detection and introduces several benchmarks and algorithms that we use in this work. Fur-
thermore, we describe the general benchmarking/scoring process for the remaining chapters.
Chapter 4 is mainly concerned with research questions RQ1 & RQ3 and presents an unsu-
pervised simple online regression anomaly detection algorithm (SORAD) and investigates
the importance of its online elements on different types of time series. In chapter 5, we
introduce the DWT-MLEAD algorithm. The algorithm uses the discrete wavelet transform
(DWT) to analyze time series and detect anomalies at different time scales. We first pro-
pose an offline variant of the algorithm and subsequently discuss and implement necessary
modifications to obtain a fully online algorithm. A deep learning (DL) approach, called
LSTM-AD, based on stacked long short-term memory (LSTM) networks, is introduced in
chapter 6. Like SORAD, LSTM-AD predicts a time series’s normal behavior, and the pre-
diction errors on several prediction horizons are used to detect anomalous behavior. We
apply LSTM-AD to a set of electrocardiogram (ECG) recordings containing various types
of arrhythmias. TCN-AE, a temporal convolutional autoencoder based on dilated convo-
lutional neural networks, is presented in chapter 7. The model encodes time series into
significantly shorter sequences and uses its decoder’s reconstruction error as an indicator
for anomalies. TCN-AE is evaluated on anomalous Mackey-Glass time series and, further
on, on a more extensive ECG signal set. Finally, in chapter 8, we conclude this thesis and
give an outlook on possible future work. In all chapters, we investigate research question
RQ1 and implicitly also RQ2. Additionally, chapters 4 & 5 attempt to find an answer for
research question RQ3.
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Chapter 2

Fundamentals

2.1 Online Anomaly Detection

Especially in an online setting, which is often a requirement in practice, anomaly detection is
usually a more difficult task than in the offline case, for several reasons: an online algorithm
cannot process a time series several times (e.g., using batch learning approaches). Instead,
the algorithm has to gradually update its knowledge with every new data instance arriving.
Every instance is processed at maximum once. Also, often stability issues, such as numerical
overflows or diverging behavior, arise when models have to be learned incrementally, with
one example at a time, especially if the algorithm operates on an infinite data stream.
Furthermore, back-dating of anomalies is usually not possible in an online setup and, hence,
anomalous events have to be detected instantaneously. This would also require the algorithm
to be computationally feasible in order to run in real-time. On the other side, online
algorithms can also have advantages. The most notable advantage might be the adaptivity
capabilities, which allow online algorithms to learn in dynamically changing environments
and to adapt to concept drifts or concept changes. In general, online learning approaches
have several properties that are convenient for many learning tasks, especially if streaming
data is involved:

� Online approaches can incrementally adapt their models with each new example. In
contrast to offline methods, it is not necessary to keep the whole dataset in the memory.

� Online models can be used simultaneously to make predictions and learn.
� Concept drift adaptation: While offline machine learning approachescannot track con-

cept drifts, online learning algorithms generally can adapt to new situations. Also, in
situations where the data generating process adjusts its behavior to the model (e.g.,
spammers who change their e-mails according to the spam filter’s current configura-
tion), online-adaptable models can be preferable.

Next to the mentioned advantages, online learning methods are also challenging in several
aspects:

� As mentioned before, one main issue that is often faced is a trade-off between the
online learning algorithm’s adaptation speed and its stability. For example, a fast
learning algorithm can quickly adapt to new concepts in the data and might become
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unstable easily, e.g., in the presence of random noise. On the other side, an algorithm
that adapts itself less aggressively could be less sensitive to noise but might not fully
trackconcept changes in the data. This problem is also known as the stability-plasticity
dilemma [21].

� Many of the existing machine learning algorithms are inherently offline and might
require significant adjustments to achieve an online formulation.

� Additional complications arise if the rate of change and frequency of the concept drifts
varies over time.

2.2 Scoring Process for Anomaly Detection Tasks

In order to compare the performance of the different algorithms on the described benchmarks
(Section 2.3), suitable performance metrics are required. Similarly to binary classification
tasks, an algorithm can classify every instance in a time series either as normal or anomalous.
Subsequently, one can compare the classes predicted by the algorithm to the ground truth
labels. For time series taken from real-world problems, the anomalies are often labeled
manually. This might lead to some inaccuracies in the labeling process since experts (e.g.,
based on knowledge in the domain) might interpret certain instances differently. For artificial
time series, the labeling process can generally be automatized and is mostly very accurate.
The exact scoring procedure using anomaly windows is described in the following.

2.2.1 Anomaly Score & Anomaly Threshold

In practice, there are two approaches to report anomalous behavior: 1. The algorithms
directly assign a binary label to each data point or, 2. they output a so-called anomaly
score for each data point, as an intermediate indicator for the degree of abnormality of the
corresponding point. This anomaly score is a continuous (usually between 0 and 1) value and
reflects the algorithm’s predicted probability of a data point being anomalous. Low values
are an indicator of nominal behavior and high values indicate that an unusual situation
has been observed. The first approach has the disadvantage that there is no possibility to
control the sensitivity of the algorithm since labels are directly assigned to each point. The
second approach allows to specify a so-called anomaly threshold, with which a sensitivity
level can be set. Points with a score above the threshold are classified as anomalous, all
other points are classified as nominal. By reducing the threshold the algorithm will get more
sensitive and detect more anomalies. However, at the same more false alarms will be issued.
Finding a suitable threshold is heavily dependent on on the application. For example, in
critical medical health monitoring systems the anomaly detection algorithms might have to
be more sensitive (having a relatively low threshold).
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Figure 2.1: A time series taken from the Numenta Anomaly Benchmark (NAB) with in total 4 anomalies
(anomaly windows indicated by red shaded vertical bars). In this plot, we illustrate the construction of
the confusion matrix (Section 2.2.2) for some sample detections. The confusion matrix for this particular
example is depicted in the top-right corner. The last anomaly window contains two detections, however,
only the first detection will be counted as TP. In this example, we do not show TN in the confusion matrix
since TN usually is of limited interest for anomaly detection tasks.

2.2.2 Anomaly Windows & Confusion Matrix

Usually, anomalies in time series are not single points and certain instances of time. Most
anomalies span a longer range in the time series. In many cases, it is also not entirely clear,
where exactly an anomaly begins and where it ends. A useful approach used in practice is to
simply specify a so-called anomaly window of appropriate length, which is centered around
the ground truth label(s). In order to correctly detect an anomaly, an algorithm would have
to classify at least one point within the anomaly window as anomalous. Detections that
fall into the anomaly windows are considered as true positives (TP). However, only the first
true positive in each window is counted. The remaining detections in the same window are
ignored. If an algorithm fails to flag any instance inside an anomaly window as anomalous,
this will be considered as one false negative (FN). All detections outside the window are
considered as false positives (FP). All other points, which are not marked as anomalous, are
considered as true-negatives (TN). However, TNs play only a minor role in the evaluation
of the algorithms, as they represent the vast majority of all points. In some cases, especially
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for very long time series (such as ECG data), we will permit to group a small range of false
positives (e.g., if they span less than one heart beat) into a single false positive, in order to
prevent situations where false positives will dominate the scoring process. We will use the
anomaly windows throughout this thesis to denote anomalies. Table 2.1 summarizes the
construction of the confusion matrix.

Table 2.1: Confusion matrix for time series anomaly detection tasks.
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The scoring process using anomaly windows is illustrated in Figure 2.1.

2.2.3 Algorithm Performance Measures

In our setup, the real anomaly labels are not passed to the algorithms (i.e., the task is
treated as an unsupervised learning task like in a real-world application setting). Hence,
each anomaly detection algorithm has to learn the normal structure of a time series and
has to be able to identify anomalies among the observed time series values. The ground
truth labels are used only for evaluation purposes, or to obtain anomaly thresholds for all
algorithms (for example, using the EAC-criterion, as described below), which allow a fair
comparison.

From the aforementioned quantities TP, FP, FN, and TN, additional metrics can be
derived: Precision (also called positive predictive value) takes into account how many false-
positive errors were produced and is defined as the number of correctly identified anomalies
divided by the number of all predicted anomalies:

precision =
TP

TP + FP
. (2.1)

Recall (also called sensitivity) measures the detection rate of true anomalies and is defined as
the number of correctly identified anomalies divided by the overall number of true anomalies:

recall =
TP

TP + FN
. (2.2)

Both measures are independent of TN, which usually only plays a minor role in anomaly de-
tection tasks due to the typically highly unbalanced class labels. Depending on the anomaly
threshold of the algorithm, there is a tradeoff between precision and recall. While preci-
sion and recall are important metrics, it is not always possible to compare two algorithms
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based on these measures. For example, one algorithm might achieve a high recall but a low
precision and another algorithm, vice versa, a high precision and low recall. In such situa-
tions, a direct comparison is infeasible. In order to fairly assess algorithms based on these
two objectives (precision and recall), the algorithms are typically compared based on the
so-called equal accuracy (EAC) where precision and recall are approximately equal. We will
use EAC as one performance indicator. Another possibility is to generate a multi-objective
plot, where precision and recall are plotted against each other for a large range of anomaly
thresholds.

The F1-score combines precision and recall into a single value and is defined as their
harmonic mean:

F1 = 2 · precision · recall

precision + recall
=

2 · TP

2 · TP + FP + FN
(2.3)

Since the F1-score considers both, precision and recall, and weights both equally, the F1-
score will be the most important measure during our later experiments. A perfect algorithm
would achieve a precision and recall of 1, which would also result in F1 = 1. Two additional
metrics, which are used less commonly for anomaly detection (since they are based on TN)
are the false-positive rate (FPR) and the positive likelihood ratio (PLR):

FPR =
FP

FP + TN
, (2.4)

PLR =
recall

FPR
. (2.5)

Finally, other relevant performance indicators of an algorithm are its computation time
(for training and inference) and its memory requirements. Usually, we will report average
computation times on a certain computer and the number of trainable parameters of the
models.

In the literature, another commonly reported metric is the area under the ROC (Receiver
Operation Characteristic) curve, in short AUC-ROC, which summarizes the performance of
an algorithm when the anomaly threshold is varied. However, we do not use AUC-ROC for
our scoring process, since it is not particularly well suited for imbalanced data sets (ROC
curves plot recall against FPR). In such cases, Precision-Recall (PR) curves, as used by us,
give better information. Simiarly to AUC-ROC, it is also possible to compute the AUC-PR,
however, we usually plot the PR curve, which is more intuitive than a single metric.

2.3 Time Series Anomaly Detection Benchmarks

In the following, we describe several time series anomaly detection benchmarks that we use
in this work for benchmarking purposes. All benchmarks are publicly available and serve
as a common reference point for comparing the investigated algorithms.
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2.3. TIME SERIES ANOMALY DETECTION BENCHMARKS

2.3.1 Yahoo’s Webscope S5 Dataset

The Webscope S5 dataset is a relatively large anomaly detection benchmark which is pub-
licly available [87]. It consists of 367 time series (with overall 572,966 data points). On
average, each time series has approximately 1,500 instances. The Webscope S5 benchmark
is split again into the 4 datasets A1, A2, A3 and A4 containing 67, 100, 100 and 100
time series. While class A1 has real data from computational services, classes A2, A3, and
A4 contain synthetic anomaly data with increasing complexity. Example plots are shown
in Figs. 2.2–2.5. The ground truth anomaly information is available for all time series.
For Yahoo’s Webscope S5 data we place anomaly windows of size 10 around the labeled
anomalies. In our setup, the ground truth anomaly labels are not provided to the anomaly
detection algorithms, which have to learn to separate anomalies from normal behavior in
an unsupervised fashion.
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Figure 2.2: Example plot for the A1 data. Black
crosses mark the true anomalies and the red vertical
bars indicate their anomaly windows. The time
series of the A1 data were taken from real world
applications and anomalies were manually labeled.
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Figure 2.3: Example plot for the A2 data. The
time series of the A2 data were generated synthet-
ically. The time series include a trend, a seasonal
(periodic) component and noise. The anomalies
were added at random instances.
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Figure 2.4: Example plot for the A3 data. The
time series of the A3 data (blue) were generated
synthetically. The time series include a trend, three
seasonal (periodic) components and noise (green).
The anomalies were added at random instances.
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Figure 2.5: Example plot for the A4 data (blue).
Similar to the A3 data. Additionally, change point
anomalies are introduced (indicated by the vertical
dashed lines) in which the characteristics (such as
slope or frequency) of the individual components
are changed.
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2.3.2 The Numenta Anomaly Benchmark

The Numenta Anomaly Benchmark (NAB) [89] is a publicly available dataset that consists
of 58 time series with in total 365,558 data points – the shortest series containing 1,127,
the longest containing 22,695 and the average series containing approx. 6,300 instances.
The majority of the time series are real-world data coming from application areas such
as server monitoring, network utilization, sensor readings from industry and social media
statistics [89]; 11 time series were generated artificially, from which 5 are anomaly-free. In
total, over all 58 time series, 115 anomalies were labeled, most of which were identified and
documented manually by a human expert. The ground truth anomaly labels are available
for all considered time series. An example taken from NAB is shown in Figure 2.1.

2.3.3 The MIT-BIH Arrhythmia Database

The MIT-BIH arrhythmia database [52, 112, 113] contains two-channel electrocardiogram
(ECG) signals of 48 patients of the Beth Israel Hospital (BIH) Arrhythmia Laboratory. Each
signal was recorded with a sampling frequency of 360 Hz and has a length of approximately
half an hour, which corresponds to 650 000 data points each. The two channels recorded
are the modified limb lead II (MLII) and a modified lower lead V1, in a few cases V5.
Each recording contains on average 2160 ± 365 heartbeats, and in total, there are 54 087
heartbeats. The individual signals have a quasi-periodic behavior, with differing heart-
beat patterns for each subject. To understand the complexity of anomaly detection in
quasiperiodic ECG data, we show in Fig 2.6 an anomaly example. The normal signal is
quasiperiodic (peak height and other small details may differ from period to period to
some extent). The anomalous region has a very similar peak, yet it comes earlier than
expected. The model which predicts anomalies thus has to learn not only the shape of the
peak but when to expect it. This requires to process long-range information since the local
neighborhood of the anomalous peak looks absolutely normal.

There are many different events in all ECG time series, which were labeled by human
experts. The whole list of heartbeat annotations is found in [112]. InTable 2.2, we summa-
rize nine event classes, which are considered as anomalous.
The unsupervised anomaly detection approaches investigated in this thesis rest on the as-
sumption that most time-series data is normal (nominal) and that anomalous events are
relatively seldom.

Since there are time series in the database which contain many events (in several cases,
the vast majority of heart beats are anomalous events) we limit ourselves to time series with
a small to moderately number of events.

ECG-13 For our initial experiments in Chapter 6, we consider only those time series with
50 or fewer events. Overall, 13 out of 48 time series will be used. We call this data set
the ECG-13 data. The selected time series contain 130 anomalous events from 6 anomaly
classes, which are listed in Table 2.2.
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ECG-25 Later, in Chapter 7, we will extend the benchmark and select those 25 time
series with 250 or fewer anomalous events and call this data set the ECG-25 data. The
ECG-25 data contains 721 events. Additionally, for the ECG-25 data, we also perform
some simple pre-processing steps, which are commonly done in practice: Since several of
the raw 2-dimensional ECG signals contain a lot of noise and exhibit simple baseline drifts,
each signal is filtered with a bandpass filter parameterized with the cutoff frequencies of 2
and 20 Hz. These are values which are commonly used for the processing of ECG signals
in practice (cf. Pan-Tompkins algorithm [127]). This bandpass filter removes most of the
high-frequency noise in the signal as well as drifts in the baseline. In order to reduce
the training time of the models, we down-sample (using an anti-aliasing filter) each ECG
signal in ECG-25 by a factor of nsamp = 5. This shortens the length of the ECG signal
from originally 650 000 time-steps to just T = 130 000 time-steps without losing too much
information from the signal. The down-sampling was done to speed-up the training time of
the individual algorithms.

For the ECG-13 and ECG-25 data, we normalize each input time series to zero mean
and unit variance before generating the training samples. In the MIT-BIH benchmark, only
the R-peaks (the tops of the main spikes on the ECG line) of the QRS complex are labeled
(either as normal or with the corresponding arrhythmia type). However, it is not possible
to locate the position of an anomaly in exactly one point of the ECG signal.

Thus, as for the other benchmarks, we specify an anomaly window for each anomaly. The
anomaly window is centered around the given label and contains 400 (80 after downsampling
the time series in ECG-25) data points before and after the label, which corresponds to
approximately 2 seconds (or roughly one heartbeat before and after the label). A more
detailed database description can be found in [113].

Table 2.2: Anomaly types in the ECG-13 and ECG-25 data considered for the experiments. The descrip-
tions are taken from [112]. The second column shows the overall number of the various anomaly types for
ECG-13 and the third column for ECG-25 considered ECG signals.

Code # ECG-13 # ECG-25 Description
a 6 11 Aberrated atrial premature beat
A 44 235 Atrial premature beat
e – 10 Atrial escape beat
f – 22 Fusion of paced and normal beat
F 2 25 Fusion of ventricular and normal beat
J – 3 Nodal (junctional) premature beat
V 53 374 Premature ventricular contraction
x 8 19 Non-conducted P-wave (blocked APC)
| 17 22 Isolated QRS-like artifact

Σ 130 721
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Figure 2.6: Example ECG signal from the MIT-BIH Arrhythmia database. This is just one type of
anomaly out of the set of 9 different anomaly types (to be discussed later in more detail, see Table 2.2).

2.3.4 The Mackey-Glass Anomaly Benchmark

During our work on a paper [166], we developed a non-trivial synthetic benchmark, named
Mackey-Glass anomaly benchmark (MGAB) [167]. The motivation for this benchmark was
to be able to generate fairly long synthetic time series (with 100 000 points) with well-
defined, yet non-trivial anomalies, in order to investigate and evaluate larger deep learning
anomaly detection models. MGAB allows creating an unlimited amount of quasi-periodic
time series data with steerable difficulty by simply adjusting a few parameters of the MGAB
generation process (e.g. time delay, smoothness parameters). In Figure 2.7, an excerpt of
ab MGAB time series is shown.

Mackey-Glass (MG) time series are known to exhibit chaotic behavior under certain
conditions. MGAB contains 10 MG time series of length T = 105. Into each time series 10
anomalies are inserted with a procedure described in Section 2.3.4.2. In contrast to other
synthetic benchmarks, the introduced anomalies are for the human eye nearly invisible in
the context of the normal (chaotic) behavior. Overall, we generate 100 anomalies in 106

time series points. The benchmark data and the detailed procedure for generating these
and similar benchmark data are publicly available at GitHub [167].1

1GitHub repository: https://github.com/MarkusThill/MGAB/
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Figure 2.7: A section of a Mackey-Glass time series containing three anomalies. For the human eye, these
anomalies might be hard to spot. Fig. 2.10 unveils the location of the anomalies.

2.3.4.1 The Mackey-Glass Equation

The Mackey-Glass equation [106] is a so-called non-linear time delay differential equation
(DDE), which is defined as

dx

dt
= β · x(t− τ)

1 + x(t− τ)n
− γx(t), (2.6)

where τ, n, β and γ are real numbers. Additionally, an initial condition and a past (history)
are required in order to integrate the equation. Commonly, initial condition and past are
chosen to be constant with x(t ≤ 0) = h. Depending on the parameterization of Eq. (2.6),
the resulting time series develops various patterns of chaotic and periodic dynamics. One
possibility to visualize the chaotic behavior of a Mackey-Glass attractor is a time delay
embedding graph, which plots the delayed series x(t − τ) against the actual Mackey-Glass
time series x(t). An example is shown in Fig. 2.8. In order to generate all Mackey-Glass time
series used in this work, we use the JiTCDDE package for Python [11], which is designed
to accurately integrate delay differential equations (DDEs).

2.3.4.2 Generating Anomalies in Mackey-Glass Time Series

In order to create the Mackey-Glass Anomaly Benchmark, we first generate a sufficiently
long time series having a dimension of d = 1 using the JiTCDDE [11] solver with the
parameters τ = 18, n = 10, β = 0.25, γ = 0.1, h = 0.9. The integration step size is set
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Figure 2.8: Time delay embedding of the Mackey-Glass attractor, which is described in Section 2.3.4.2,
for τ = 10.0, β = .25, γ = .1, h = .9 (history).

to 1. The maximal Lyapunov exponent (MLE) of λmle = 0.0061 ± 0.0002 suggests that
the generated time series is (mildly) chaotic. Subsequently, we split this series into ten
same-sized individual time series and insert 10 anomalies into each time series.

The basic idea is to split the time series in two places and remove the segment in between.
If the two split points are carefully chosen, the manipulation will be hardly visible later,
without the knowledge of the dynamics of the MG series. This procedure is repeated to
insert 10 anomalies in each time series. It is ensured that a new anomaly does not remove
a previously inserted anomaly. Finally, the 10 time series are truncated to a length of
T = 105. In order to make the benchmark data more similar to real-world data, we add
uniform random noise to each of the 10 time series after inserting the anomalies. For this
purpose, we sample 105 values uniformly from [−0.01, 0.01]. Overall, 96% of each time series
are normal data points and 4% anomalous.

2.4 Time Series Characteristics

Based on certain characteristics that time series may or may not exhibit, some algorithms
might be better suited for anomaly detection tasks than others. In the following, we list
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several characteristics that we found important in deciding which algorithm to choose. In
Section 8.1, we will summarize how well the anomaly detection algorithms investigated
in this work are suited for particular time series, after classifying them according to the
following characteristics.

Small data sets Some algorithms require many data for their training process. Especially
DL approaches usually require significant amounts of data for training. If no suitable pre-
trained model is available, it is mostly not recommended to train a DL model on small data
sets. Algorithms with less trainable parameters are more suited for these cases.

Multivariate time series Many time series in practice are multivariate. However, not
all algorithms are applicable to time series with more than one dimension.

Anomalies appear at different time scales In many cases, it is necessary to analyze
time series at different time scales in order to detect short-term and longer-term anomalies.

Long-term correlations Some problems require that the anomaly detection algorithm
learns the time series’s behavior over very long ranges of time to detect anomalous patterns
reliably (see Section 2.3.3 for an example). Algorithms with only a limited temporal memory
or a small temporal receptive field are only partially or not suited for these types of problems.

Unpredictable time series Prediction-based anomaly detection algorithms assume that
future instances of a time series can be predicted (forecasted) to some extent. However, some
time series in practice are inherently unpredictable, although they show nominal behavior,
which can be learned with other methods. A common approach to handle unpredictable
time series is to use reconstruction-based algorithms (based on autoencoders or similar
architectures).

Weak non-stationary behavior In many time series recorded under real-world condi-
tions (such as ECG signals), one can observe weak forms of non-stationary behavior such
as baseline wandering or changes (gradual or sudden) in the signal noise or quality.

Strong non-stationary behavior For strong non-stationary behavior, online-adaptable
algorithms are required which can adapt to new concepts in the data. Examples for such
behavior are (sudden) notable changes in the trend, in the signal frequency or in the recurring
signal patterns.
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Figure 2.9: Top: Example for the creation of a Mackey-Glass time series with a temporal anomaly. The
original time series (dashed line) is manipulated in such a way, that a segment is removed and the two
remaining ends are joined together. In this example, the interval [21562, 21703] is removed from the original
curve. The resulting manipulated time series (solid line) has a smooth point of connection, but significantly
differs from the original. Bottom: Zoomed-In. The red shaded area indicates the position where the anomaly
was inserted.
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Figure 2.10: This graph shows the same section of a Mackey-Glass time series as Fig. 2.7, but now reveals
the location of the anomalies in the time series. The anomalies are at t1 = 40388, t2 = 40917 and t3 = 41550.
The positions are indicated by the black crosses in the plot.
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Chapter 3

Related Work

In this chapter, we shortly describe several state-of-the-art anomaly detection algorithms
that we use in this work for comparison purposes. Additionally, we give an overview of the
current relevant state of the art in the field of time series anomaly detection. Since this
field is very wide, the algorithms and benchmarks discussed in this chapter are in no way
intended to represent a comprehensive list. For a detailed overview and classification of
the different algorithms and datasets, the reader is referred to general anomaly (novelty)
detection survey papers [26, 64, 131, 135, 109, 110, 23, 128] or survey papers with the focus
on time series [31, 8, 16, 55]. Additional, more specific related work is also presented in the
following chapters.

3.1 Algorithms used for Comparison Purposes

This section describes all time series anomaly detection algorithms used in this thesis for
comparison purposes. Our own contributions will be described in the course of the thesis:
Chapter 4 – 7 introduce SORAD, DWT-MLEAD (offline & online variant), LSTM-AD, and
TCN-AE, respectively.

3.1.1 ADVec

Twitter’s ADVec algorithm [173] is a robust online anomaly detection algorithm designed
to detect local and global anomalies in time series with seasonal/periodic behavior and
underlying trend. ADVec uses a method called Seasonal Hybrid ESD (S-H-ESD), which
is based on the Generalized ESD (extreme Studentized deviate) test [141], combined with
robust statistical approaches and piecewise approximation. It is available as open-source
R package ”AnomalyDetection” from Github.1 The algorithm requires three main para-
meters: The first parameter α describes the level of statistical significance with which to
accept or reject anomalies. As in the other algorithms, this parameter can be interpreted
as an anomaly threshold. ADVec requires a second parameter, a period-length. The third
parameter, maxanoms, determines the maximum number of anomalies that the algorithm will

1http://github.com/twitter/AnomalyDetection
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detect as a percentage of the data. We found that the setting of the parameter maxanoms is
crucial (but not difficult to select) for the performance of ADVec.

3.1.2 NuPIC

Numenta’s online anomaly detection algorithm NuPIC [160] is based on the hierarchical
temporal memory (HTM) model [49] which is biologically inspired by the neocortex of
the brain. NuPIC is also open-source and can be obtained from GitHub2. To verify the
correctness of our NuPIC installation, we applied it to the Numenta Anomaly Benchmark
(NAB) ([89], section 2.3.2) using the standard parameter settings and confirmed that we
could exactly reproduce the results3 published in [89]. The anomaly detection algorithm
behind NuPIC, similarly to other approaches, is based on the assumption [160, 89] that
time series are predictable to a certain extent. At each time step t, NuPIC performs several
predictions for time step t+ 1. These predictions are compared with the time series’s actual
value at t + 1 and based on the prediction errors, an anomaly score is formed. NuPIC
also tracks and adapts the estimated mean and variance for the anomaly scores in an online
fashion and can thus handle dynamically changing behavior to some extent. Furthermore, it
is supposed to work on a large variety of datasets without manual parameter tweaking [89].
Although the parameters can be tuned with an internal swarming tool [3], a tool to aid
automatic parameter search for a given dataset, we decided to use the standard parameter
settings recommended in [89] for all investigated problems. For some problems, the time-
expensive tuning process is not feasible, and for the other problems, we found that the
results were very similar, so we list the results for the standard parameter settings in all
chapters. NuPIC outputs an anomaly likelihood in the interval [0,1] for each time series
point, which is suitably thresholded to control the algorithm’s sensitivity.

3.1.3 LSTM-ED

LSTM-ED [108] attempts to reconstruct sub-sequences of time series in order to detect
anomalies. It addresses the problem that many time series are not predictable (in a sense
that it is impossible to accurately forecast the time series’s next values). Internally, it uses
an encoder-decoder LSTM [63, 54, 62] network, which takes sub-sequences from the time
series and encodes them into vectors of fixed length and, subsequently, attempts to recon-
struct the whole input sequence from the encoded vector. For each reconstructed point, a
reconstruction error is computed. For the reconstruction errors, a Gaussian distribution is
estimated, and the probability density of each point is used as anomaly score. The algo-
rithm’s main parameters are batch size B, the number of training epochs nepochs, sequence
length Ttrain, hidden size h = 100 and %Gaussian, which specifies the fraction of the data

2https://github.com/numenta/nupic
3The result files can be obtained from https://github.com/numenta/NAB/tree/master/results/

numenta.
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used to estimate a Gaussian distribution for the anomaly detection task. Both encoder and
decoder use a stacked LSTM network with two layers.

3.1.4 DNN-AE

DNN-AE [46] is similar to LSTM-ED in that it takes short sequences from a time series
and attempts to encode and reconstruct these. However, it is a conventional deep autoen-
coder architecture improving an earlier approach based on replicator neural networks [58].
Contrary to the replicator neural network approach, DNN-AE uses a significantly deeper
architecture, trains its weights with the more powerful ADAM optimizer [82], and replaces
the step-wise (staircase) activation function4 at the bottle-neck layer with tanh(·). The al-
gorithm requires several parameters similar to LSTM-ED: batch size B, number of training
epochs nepochs, sequence length Ttrain and a hidden size of h for the bottle neck (which results
in a compression factor of Ttrain/h for each sequence) and %Gaussian (same as for LSTM-ED).
The number of densely connected layers L depends on Ttrain and h: The number of units
in all hidden layers (except for the bottle neck) are powers of two which are smaller than
Ttrain and h. For example, for Ttrain = 50 and h = 10 we have L = 6 layers and the number
of units for the individual layers is (32, 16, 10, 16, 32, 50).

3.2 Other Anomaly Detection Algorithms

In recent years much effort was put into the design of time series anomaly detection algo-
rithms, and researchers proposed many new methods. In this section, we give an overview of
different approaches. Due to the great variety in this field, this overview is not exhaustive.

3.2.1 Online Algorithms

Next to the already introduced algorithms ADVec [173] and NuPIC [160, 49] many very dif-
ferent approaches exist for online anomaly detection in time series, for example: Yao et al.
[181] present a simple method, called Segmented Sequence Analysis (SSA), which uses the
similarity of piecewise linear representations of univariate time series and a reference model
to detect anomalous behavior in sensor data. Ma & Perkins derived an online support vector
regression (SVR) training algorithm [104] which they use to predict time series and detect
anomalies (novelties) based on the prediction error [102]. In [175], Wang et al. introduce an
online algorithm based on two statistical approaches, the Tuckey method, and the relative
entropy statistic. Their algorithm is designed to detect anomalies in large-scale cloud ser-
vices. Ahmed et al. [4] use the kernel recursive least squares (KRLS) algorithm to maintain
a relatively small dictionary of feature vectors forming a cluster in a high-dimensional fea-
ture space that approximately describes the normal behavior of traffic measurements in a

4We also experimented with the step-wise activation function introduced in [58] but could not observe
any improvements over using tanh(·).
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network. The maintained dictionary can adapt itself over time and detects anomalous net-
work traffic by computing the distance of new data points to the normal cluster. Talagala
et al. [157] present an online algorithm for univariate time series based on extreme value
theory and a kernel density estimation. In [158], an adaptable approach for streaming data
based on so-called half-space (HS) trees is proposed. Wei et al. developed an online ap-
proach based on symbolic time series representations (Symbolic Aggregate approXimation,
SAX [94]) which can – according to its authors – be applied to a wide range of applications
without domain-specific customization.

We did not find many online-adaptable DL algorithms for time series anomaly detection
in the literature: Saurav et al. [146] introduce an online DL model for (multivariate)
time series. A stacked GRU (gated recurrent unit) network is used for multistep ahead
prediction, and the mean of the prediction errors is used as anomaly score and is compared
to a threshold in order to detect anomalies. The learning algorithm is based on a stochastic
gradient descent (SGD) approach with an anomaly-score-dependent learning rate, which
can perform the backpropagation through time (BPTT) in a fully online fashion.

3.2.2 Deep Learning Approaches

Although some DL algorithms exist, which can be used in an online-adaptable fashion [146],
we found that most DL anomaly detection algorithms for time series are trained offline.
Due to the temporal nature of the data, common building blocks for DL algorithms are
convolutional neural networks or recurrent neural networks (RNNs) such as the long short-
term memory (LSTM) [63] or gated recurrent units [29], which are generally applicable to
multivariate time series. In some cases also regular fully-connected neural networks are used.
Most algorithms that we found in the literature can be classified either as prediction-based
or reconstruction-based or are combinations of both.

3.2.2.1 Prediction-based DL Algorithms

The most common approach is to train a DL model to perform a multistep-ahead prediction
(forecasting) and compare the predictions to the observed values. Typically, the prediction
errors are used as an indicator for anomalous behavior. Although these approaches are
trained in a (self-) supervised fashion to predict the time series, they are still considered
unsupervised as long as the actual anomaly labels are not used. Malhotra et al. [107]
describe such an anomaly detection algorithm based on LSTMs. It predicts over several
horizons and estimates a multivariate Gaussian distribution for the prediction errors, and
uses the probability density function of the estimated Gaussian as anomaly score. [28, 45,
44, 67, 18, 51] are similar to and partially based on [107], but apply their algorithms to
different problems. Partially, also the anomaly thresholds are computed in different ways,
for example, simply with the mean squared error (MSE) [45, 44], or using exponentially-
weighted error averages [67]. However, most of these models ([107, 28, 45, 44, 67, 18]) are
only trained with anomaly-free data and partially also require that the time series data is
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manually split into training, validation, and test sets (which requires labeled data or expert
knowledge). In chapter 6 (based on [161]), we present a prediction-based LSTM model
which can be trained with contaminated data (time series with anomalies) and extends
[107] in several aspects.

Instead of LSTMs or GRUs, in [61], He & Zhao use a temporal convolutional net-
work (TCN) [13] for predicting time series, while Munir et al. [115] use regular CNNs.
Zhu & Laptev [187] present an algorithm that is a prediction-based approach but uses a
reconstruction-based approach (described in the following section) for pre-training: during
the pre-training phase, an LSTM encoder-decoder network is trained to extract useful em-
beddings from a sequence. Subsequently, the decoder is discarded. The encoder network
generates features for the prediction network (a multi-layer densely connected network),
predicting the next few time-series steps. Additionally, the authors describe an approach to
assess the prediction uncertainty, which can help to detect anomalies.

3.2.2.2 Reconstruction-based Algorithms

Other popular approaches for time series anomaly detection are based on compressing and
reconstructing time series (or segments thereof) and detecting anomalies using the recon-
struction error (or reconstruction probabilities). Reconstruction-based algorithms can be
applied when a time series contains normal patterns which are inherently unpredictable.
Generally, they are also applicable to predictable time series. The previously introduced
DNN-AE ([58], Section 3.1.4) and LSTM-ED ([108], Section 3.1.3) are examples for such ap-
proaches. Similarly to [58], other early approaches apply regular (deep) autoencoders (AE)
to windows of fixed length and slide the AE over the whole time series. Although relatively
simple, these approaches demonstrate their effectiveness in various applications [144, 58, 35].
Oh & Yun [123] present an autoencoder architecture based on CNNs, which is trained to en-
code and reconstruct segments of a spectrogram. If the reconstruction SSE (sum of squared
errors) of a segment lies above a predefined threshold, the corresponding segment is flagged
as anomalous. Kieu et al. [80] use an autoencoder architecture based on 2D CNNs and
another LSTM encoder-decoder approach similar to [108]. Additionally, they enrich time
series with additional features before passing them to the autoencoder. In [79], Kieu et al.
present an autoencoder approach based on an ensemble of sparse recurrent neural networks.
Zong et al. present with DAGMM an architecture [188] where the parameters of a deep
autoencoder and a Gaussian mixture model are simultaneously learned during training.
Zhang et al. [184] construct so-called signature matrices of time series segments, capturing
the correlations between different dimensions of the time series, and subsequently use an
attention-based convolutional LSTM (convLSTM) autoencoder to encode and decode the
signature matrices. The residual signature matrices are used as an indicator for anomalous
behavior.

Variational approaches Variational autoencoders [83] have a wide range of applica-
tions. In recent years, they are also becoming increasingly popular in the field of (time
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series) anomaly detection. Generally, variational anomaly detection approaches attempt to
compute reconstruction probabilities instead of reconstruction errors [9]. Pereira & Silveira
[133] propose a variational Bi-LSTM autoencoder with variational self-attention (VSAM),
which takes short segments as input. But instead of reconstructing the original points of
the input sequence, the decoder attempts to compute the reconstruction probability of each
point by estimating the parameters of a Laplace distribution (again, for each point of the
sequence). Given the parameters of the Laplace distribution, the probability (density) of
the corresponding input point can be used as anomaly score (here, lower values indicate a
larger degree of abnormality). The authors apply their VSAM algorithm to univariate solar
photovoltaic generation time series. In later work, they apply similar approaches to ECG
data [132, 134]. The Donut algorithm [180] uses sliding windows and applies a variational
autoencoder to windows of fixed length. The algorithm is studied on a dataset from a large
internet company and outperforms several baseline algorithms. The dataset is not publicly
available. Su et al. propose the OmniAnomaly algorithm [153], which is based on stochastic
recurrent neural networks and is designed to encode and reconstruct short sub-sequences
of a multivariate time series. Similar to most other approaches, the authors use the re-
construction probability as anomaly score. Additionally, they present an approach for an
automatic threshold selection. Other similar variational anomaly detection algorithms were
introduced by Park et al. [129] (LSTM variational autoencoder) and Su et al. [154] (echo
state conditional variational autoencoder).

GAN-based approaches In recent years, the generative adversarial network (GAN),
invented by Goodfellow et al. [53], is being applied to anomaly detection tasks [39]. For
time series anomaly detection, often encoder-decoder architectures are used for the generator
network [186, 71]. In other approaches, the original sequence is reconstructed from an
incrementally updated latent space representation (the gradients of an error function are
used to improve an initially random latent space vector iteratively) [91, 92]. Most GAN-
based approaches compute the anomaly score for a given sample as a weighted average of a
reconstruction loss and a discriminator loss [91, 92, 71]. In [186], the authors only consider
the reconstruction loss for the anomaly score. Remarkably, all GAN-based approaches that
we studied [186, 71, 91, 92] require that the training data is exclusively normal and does
not contain any anomalous sequences.

3.2.2.3 Other relevant Algorithms

The HOT SAX algorithm [77, 78] by Keogh et al. is based on Symbolic Aggregate ApproX-
imation (SAX) [94, 95] and is designed to detect time series discords, i.e., anomalous sub-
sequences in a longer time series. Other worth-mentioning approaches are based on one-class
classification (e.g., using support vector machines [103] or using neural networks [24, 149]),
artifical immune-system approaches [33, 34], or energy based models [183]. Notable exam-
ples from industry – next to ADVec [173] and NuPIC [160] – are Yahoo’s EGADS [88],
LinkedIn’s luminol [97] and Expedia.com’s adaptive alerting [43].

30



3.3 Benchmarks

As described before in Section 2.3, we use Yahoo’s Webscope S5 dataset, the Numenta
Anomaly Benchmark (NAB) [89], the Mackey-Glass Anomaly Benchmark [167, 166] and the
MIT-BIH Arrhythmia database [52, 112, 113] in our work for benchmarking and comparison
purpoes.

Apart from these four datasets, other benchmarks can be found in the literature: Filonov
et al. generated the synthetic Gasoil Heating Loop (GHL) dataset [45], using a model of
a real gasoil plant to simulate hacker attacks. During the attacks, the simulated intruders
adjust the setpoints of various process variables. In order to prevent a fault of the system, an
anomaly detection algorithm has to detect the unauthorized changes. In total, the bench-
mark contains 49 19-dimensional time series. One time series contains only normal behavior
and is used as the training data. However, many anomalies can be detected by applying a
simple threshold to one of the time series’ dimensions. A similar benchmark [44] uses the
Tennessee Eastman Process (TEP) with simulated cyberattacks to generate industrial mul-
tivariate (59-dimensional) time series. In [20], a benchmark containing 276 univariate time
series is introduced. The time series are taken from real-world sensor data (such as temper-
ature or light). However, the authors only inserted artificial anomalies. Each time series
has a length between 2000 and 18 000 data points and contains 5 to 23 anomalies of various
types (random, malfunction, bias, drift, polynomial drift, and combinations). Additionally,
a Java program is available to generate new anomalous time series. However, we did not
use this benchmark for our work as the anomalies were artificial and partially appeared to
be too trivial. Other popular time series anomaly benchmarks are the Soil Moisture Active
Passive satellite (SMAP) and Mars Science Laboratory rover (MSL) data by NASA [67]
and the Server Machine Dataset (SMD) [153]. A more recent dataset is Skoltech’s anomaly
benchmark (SKAB) [75], which currently contains more than 30 multivariate time series.
Each time series contains about 1 200 points. The data was collected in a testbed consisting
of a water circulation system with eight different sensors. In [18], Bontemps et al. de-
scribe how they converted the KDD Cup 1999 dataset [76], a network instrusion detection
benchmark (initially designed for point-based anomaly detectors), into a time series version.

In our work, we mostly use the standard metrics precision, recall, and F1-score to com-
pare the performance of algorithms. Additionally, we use precision-recall curves to compare
algorithms over a large range of anomaly thresholds. More advanced – but less commonly
used – evaluation metrics for time series are introduced in [159] and [89].
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Chapter 4

SORAD: A Simple Online Regression
Anomaly Detection Algorithm

4.1 Introduction

A challenging aspect of time series anomaly detection is working in environments with non-
stationary behavior or unknown or vaguely defined nature of future anomalies. Most of
the current anomaly detection algorithms follow the general idea to classify an anomaly
as a significant deviation from the prediction. This chapter presents a comparative study
where several online anomaly detection algorithms are compared on the Yahoo Webscope
S5 anomaly benchmark. We show that a relatively S imple Online Regression Anomaly
Detector (SORAD) is quite successful compared to other anomaly detection algorithms.
We discuss the importance of several adaptive and online elements of the algorithm and
their influence on the overall anomaly detection accuracy.

In many applications, data is collected continuously sequentially in the form of data
streams or time series. A common characteristic of data streams is the inherent non-
stationarity. In a vast amount of real-world problems, data is generated by non-stationary
processes. Typically, certain properties of streams or time series (such as trends, noise,
periodicity, and other parameters) change over time.

Machine learning tasks involving such non-stationary streaming data are considered
challenging since many classical learning approaches are not applicable due to their offline
character: offline learning algorithms are trained on a whole batch of data. They require
a complete repetition of the training procedure if new examples are added to the data set.
Due to memory and time constraints, such approaches are typically infeasible for problems
with streaming data. In such cases, it is necessary to operate in an online setting on the
data and process the data in an example-by-example manner and incrementally learn from
every new example without re-training an entirely new model each time.

Especially in non-stationary environments, an anomaly is difficult to define. In its most
general form, it is the absence of normality, but

”
normality“ depends mainly on the (current)

context and cannot be expressed in one standard formula. This is the reason why anomaly
detection algorithms are very difficult to benchmark. An anomaly detection algorithm that
performs very well on a particular benchmark dataset might perform surprisingly poorly on
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4.1. INTRODUCTION

another benchmark. As an example, we will consider in this chapter Yahoo’s well-known
Webscope S5 dataset [87] with labeled anomalies of various kinds.

This chapter’s purpose is twofold: (1) We show that benchmarking anomaly detection
algorithms is difficult with currently well-established benchmark datasets. As an example,
we found that the well-known algorithm NuPIC (based on Hierarchical Temporal Memory
- HTM), which shows remarkable successes on other benchmarks (e.g., NAB [89]), performs
not so well on Yahoo’s S5 dataset. From this point, we will argue that there is a need
for benchmark datasets better capturing the variety of anomalies in time series data. (2)
Numerous applications call for fast yet reliable anomaly detection algorithms. We present
here, as a preliminary study, a relatively simple one, the Simple Online Regression Anomaly
Detector (SORAD), which nevertheless shows good performance on the Yahoo Webscope
S5 dataset. It is preliminary because SORAD needs to be refined, extended, and tested on
more diverse anomaly data benchmarks.

In this chapter, we address the following research questions:

1. How does a simple online regression algorithm perform on the Webscope S5 dataset?

2. How do other algorithms perform on the same benchmark? In particular, we compare
our new algorithm’s performance to Numenta’s NuPIC algorithm[160, 49] and Twitter’s
ADVec algorithm [173].

3. How important is the online capability?

4.1.1 Related Work

In this chapter, we compare with two developments in online anomaly detection where the
frameworks are available as open-source: (a) Hierarchical Temporal Memory (HTM) [49, 89],
which is available as software NuPIC from Numenta 1, and (b) Twitter’s ADVec Algo-
rithm [173], which is available as open-source R package AnomalyDetection from Github 2.
Both algorithms are described in more detail in chapter 3.

The Yahoo S5 anomaly detection benchmark has been investigated in [68, 154, 69, 115].
While [68] uses it for detecting whether a whole time series is anomalous, [154] presents an
anomaly detection approach with echo state networks to which we will later compare. The
algorithm introduced in [69] gives only results for FP (false positives) and is thus not well
comparable. In [115], the CNN-based algorithm DeepAnT is introduced and evaluated on
the Yahoo S5 benchmark. The performance of DeepAnT for A1–A4 is later compared to
SORAD’s.

1http://www.numenta.com
2http://github.com/twitter/AnomalyDetection
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4.2 Methods

In the following sections (4.2.1 – 4.2.2), we present the methods necessary for the offline
variant of SORAD, which we call Offline-RAD. Sections 4.2.3 – 4.2.4 cover the methods
necessary to extend this offline variant to the online algorithm SORAD. Having both variants
available allows us to measure the effect of online adaptivity precisely.

4.2.1 Feature Generation using Sliding Windows

In order to model temporal relationships in machine learning, a common approach is to
employ a so called sliding window of a fixed length ℓ, which creates feature (input) vectors of
length ℓ. When applied to a time series or sequence of length N in the form (y0, y1, . . . , yN−1),
the sliding window creates for each instance yk a feature vector xk+1 consisting of a bias
term and the ℓ previous instances, i. e. xk = (1, yk, yk−1, . . . , yk−ℓ+1)

T . During the transient
phase (k < ℓ) we pad values with negative indices with y0. Matrix X is composed of the
transposed inputs xk, one vector per row. The number of rows is the size K of the training
set. Likewise, matrix Xtest has N −K rows, starting with vector xK .

4.2.2 Offline Regression Anomaly Detection (Offline-RAD)

The offline regression algorithm divides each time series into a training phase t ≤ K and
a test or detection phase t > K. The general procedure is described in Algorithm 1. This
algorithm requires a matrix inversion for each pass through the training data to build the
model vector θ. When the parameters θ are estimated, the prediction for new examples is
computed with ỹk = θTxk. The tuning of the regularization parameter ρ is done as follows:
The K = 500 training data are divided further: For various values of ρ, the training phase
is done on the first 400 training data, and the mean prediction error is measured on the
remaining 100 validation data. After choosing the value ρ with the smallest prediction error,
the final model is trained on all K = 500 training data. We perform two passes through
the data in order to make the training data approximately anomaly-free.

4.2.3 Online Estimation of a Distribution’s Mean and Variance

The naive approach for online estimation of a distribution’s mean and variance from the
sum of squares suffers from numeric instability. The Welford algorithm [176] proposes a
numerically stable variant. A variant of it is used in this chapter to estimate the parameters
of the normal distribution.

As a new element, we introduce a forgetting factor for mean and variance. The forgetting
is realized by weighting the elements, e. g., for the sample variance we use

s2n =
n∑

i=1

wi(xi − µn)2∑n
i=1wi

, (4.1)
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4.2. METHODS

Algorithm 1 Offline-RAD: Offline anomaly detection algorithm. Input: Time series (yk),
anomaly threshold ϵ, training set size K = 500. Output: Anomaly flags aflags.

1 Initialize:
2 Anomaly flags aflags ← 0 ▷ Binary Vector

3 Tune regularization parameter ρ (Sec. 4.2.2).

4

5 Training phase:

6 Create training data X and y from the K first time steps.

7 for i = 1 . . . 2 do ▷ Two passes through training data

8 θ ← (XTX + ρIℓ+1)
−1XTy

9 δ ← y −Xθ ▷ Compute train prediction error

10 Compute mean µδ and standard deviation sδ for δ

11 Calculate the ϵ-quantile zϵ of N (0, s2δ) (see Fig. 4.1)

12 E ← [µδ − zϵ, µδ + zϵ]

13 for all {k | δk /∈ E} do
14 Remove k-th row from X and y

15

16 Detection phase:

17 Create test data Xtest and ytest

18 δtest ← ytest −Xtest θ

19 for all {k | δtest,k /∈ E} do
20 aflags,k ← 1 ▷ Flag ytest,k as anomalous

where xi is the ith instance in the sample and µn is the current sample mean. The weights

wi = λn−i (4.2)

decay exponentially so that historic elements contribute less to the sample variance s2n. A
similar formula can be obtained for the sample mean µn. Both formulas can be combined
with the modified Welford algorithm to get an online formulation of Eqs. (4.1) and (4.2).
This is presented in Algorithm 2.
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One can estimate the memory (the number of time steps after an observation is “forgot-
ten” again) with the formula

nmem ≈
1 + λ

1− λ
,

as shown in Appendix B.2.4. A thorough derivation of the online weighted estimation of
mean and (co-) variance can be found in Appendix B.2.

4.2.4 SORAD

The Offline-RAD algorithm has two main disadvantages: (a) It needs a training period (500
time steps in our application) before it can perform predictions, and (b) it does not learn
any further in the detection phase. Both aspects call for an online version of this algorithm.

δ

sδ

ϵ

+zϵ−zϵ 0

Figure 4.1: The ϵ-quantiles ±zϵ of N (0, s2δ) which define the border be-
tween anomalous and normal data in Offline-RAD and SORAD.

One of the most popular online models of the past few decades is the recursive least-
squares (RLS) algorithm [59] from adaptive filter theory. The standard RLS formulation
often includes a forgetting factor λ ∈ (0, 1] that allows to deal with non-stationary systems
to some extent [172, 17]. RLS is used in Algorithm 3 to estimate the model vector θ
recursively [17]:

P← 1

λ
P− 1

λ
· Pxkx

T
kP

1 + xT
kPxk

(4.3)

θ ← θ + δk+1Pxk (4.4)

with prediction error δk+1 and forgetting factor λ. Each input vector xk is used only once.
A RLS variant for mini-batch updates (updating the parameters θ with more than one
example) is derived in Appendix B.1 and can also be used in practice.
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4.3. EXPERIMENTAL SETUP

Having an online estimation of P makes it possible to introduce a forgetting factor λ
which causes the algorithm to slowly fade out the long-ago parts of history and adapt the
model to non-stationary elements in the time series. This is not possible in the offline
version. Of course, a careful balancing between stability and plasticity of the model is
necessary.

Finally, the modified weighted Welford algorithm (Sec. 4.2.3) provides an online estima-
tion for mean and variance of the error δk+1 (Algorithm 3, step 20).

SORAD has a short transient phase for k < ℓ. In this period, where the input vector xk

needs to be partially padded (see Sec. 4.2.1), the model vector θ is left in its initial state.
But the changes ∆θ according to Eq. (4.4) are accumulated separately and added to θ at
k = ℓ. Likewise, the standard deviation sδ is kept at∞, leading to an inhibition of anomaly
detection. The changes ∆sδ are accumulated and applied to sδ at k = ℓ. After the transient
phase, θ and sδ are updated normally (Algorithm 3 and 2).

Algorithm 2 Online estimation of sample mean and sample variance for the prediction
errors. A more detailed derivation of the update rules can be found in Appendix B.2.

1 Initialize:

2 µδ = 0, s2δ = 0, M = 0, W = 0

3

4 function updateEstimation(k, δk+1)

5 W ← λW + 1

6 ∆← δk+1 − µδ

7 µδ ← µδ + ∆
W

8 M ← λM + ∆ · (δk+1 − µδ) ▷ Use new value of µδ

9 s2δ ← M
W

▷ Without bias-correction

4.3 Experimental Setup

4.3.1 Algorithm Setup

All algorithms (except Offline-RAD) operate online on the time series. We evaluate all
algorithms on the Yahoo Webscope S5 benchmark (introduced in Section 2.3).

Offline-RAD We use a window size of ℓ = 10. The first K = 500 instances of each time
series are used for training, the remaining 1000 instances for testing (detection).

Setup of Numenta’s NuPIC (HTM) To verify the correctness of our NuPIC instal-
lation, we applied it to the Numenta Anomaly Benchmark (NAB) [89] using the standard
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Algorithm 3 Pseudo code of SORAD. Input: Time series (yk), anomaly threshold
ϵ ∈ (0, 1), forgetting factor λ ∈ (0, 1]. Additionally, there is a short transient phase (see
Sec. 4.2.4). Output: Anomaly flags aflags.

1 Initialize and Transient Phase

2 θ ← (θBias 2−1 2−2 · · · 2−ℓ)T , with θBias = 0

3 (µδ, s
2
δ)← (0,∞)

4 P← 500Iℓ+1, with the identity matrix Iℓ+1

5 Anomaly flags aflags ← 0 ▷ Binary Vector

6

7 Set instance counter k ← 0
8 while instance yk+1 available do

9 xk+1 ← (1, yk, yk−1, . . . , yk−ℓ+1)
T

10 ỹk+1 ← θTxk+1 ▷ Predict next step

11 Observe yk+1

12 δk+1 ← yk+1 − ỹk+1 ▷ Compute prediction error

13 Calculate the ϵ-quantile zϵ of N (0, s2δ) (see Fig. 4.1)

14 E ← [µδ − zϵ, µδ + zϵ]

15 if δk+1 /∈ E then

16 aflags,k+1 ← 1 ▷ Flag yk+1 as anomalous

17 k ← k + ℓ− 1 ▷ Skip next ℓ instances

18 else

19 Update P and θ according to Eq. (4.3) and (4.4)

20 Update µδ, s
2
δ with updateEstimation(k, δk+1)

21 k ← k + 1

22 end while
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4.4. RESULTS

parameter settings and confirmed that we can exactly reproduce the results3 published
in [89]. In a first round of experiments we used the same parameter setting for the S5
datasets. In a second round we used NuPIC’s so called swarming algorithm [3], a tool to
aid automatic parameter search for a given dataset. The results were very similar, so we
list in the following only the results for the standard parameter settings.

Setup of Twitter’s ADVec Algorithm The ADVec algorithm has two parameters.
The first parameter α describes the level of statistical significance with which to accept or
reject anomalies. Similar to an anomaly threshold, this parameter trades off false-positives
and false-negatives. The period-length is set to the value 40 in all experiments4. Finally,
the parameter maxanoms is left at its default (maxanoms = 2%).

4.4 Results

Table 4.1 summarizes the results of all algorithms running on the four datasets A1–A4.
To have a fair comparison to Offline-RAD, we include for all algorithms only time steps
t > 500 (after the Offline-RAD training phase) into the anomaly detection phase. Appar-
ently, SORAD has a better performance than Offline-RAD, and both are on most datasets
significantly better than NuPIC and ADVec in nearly all performance measures.

The great advantage of online algorithms is, of course, that they are much faster up-and-
running. We show in Table 4.2 the results when including all time steps t > ℓ beyond the
transient phase in the anomaly detection. Basically, the results are very similar. This means
that the

’
anytime-ready‘ feature of online-algorithms does not severely influence accuracy.

Fig. 4.2 shows an example time series from the A4 dataset with the anomalies detected
by the various algorithms included. It is seen that NuPIC and ADVec produce a number of
false-positives (FP).

Anomaly detection algorithms always have a threshold parameter that allows the user to
control the trade-off between FP and FN. Fig. 4.5 shows that the performance measure F1

is very stable over several threshold decades.5 The multiobjective plot (where the measures
FP and FN are plotted against each other) in Fig. 4.3 varies these thresholds and shows
the multiobjective front for each algorithm. It is seen that both RAD algorithms dominate
the others irrespective of the chosen threshold. SORAD is significantly better than Offline-
RAD.6 This might be due to the fact that the online algorithm continues to learn, which is
advantageous for non-stationary environments.

3The result files can be obtained from: https://github.com/numenta/NAB/tree/master/results/

numenta.
4We tuned this parameter over a wide range for all four datasets.
5Fig. 4.5 shows the stability of F1 for SORAD (without forgetting). However, it holds the same way for

the SORAD-variants with forgetting.
6Additionaly, the variation of the threshold produces for SORAD a more diverse population on the

multiobjective front with no ’holes’ as in Offline-RAD.

40

https://github.com/numenta/NAB/tree/master/results/numenta
https://github.com/numenta/NAB/tree/master/results/numenta


We test in Fig. 4.3 the one-pass and the two-pass variant of Offline-RAD, showing that
there is no significant difference between both. This means that the poorer performance of
Offline-RAD (as compared to SORAD) is not due to the occasional presence of anomalies
in the training phase.

All of these results were obtained with a forgetting factor λ = 1, that is, with no
forgetting. If a time series is non-stationary, then anomaly detection might benefit from a
certain degree of forgetting the past values. We show in Fig. 4.6 the effect of varying the
forgetting factor in the range [0.8,1.0]. Additionally, Table 4.2 shows the overall results for
two SORAD variants with forgetting: While forgetting in the RLS part (SORAD-F) does
not change much, a forgetting mechanism additionally for the online estimation of the error
distribution (µδ, sδ) is of great benefit (SORAD-FMS), especially for the datasets A1 and
A4.

Table 4.3 shows the computation times for all algorithms.
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Figure 4.2: Example time series taken from data set A1 with the anomalies detected by the various
algorithms SORAD, HTM (NuPIC), and ADVec. The red vertical bars in the plot indicate the true anomaly
windows.

4.5 Discussion

4.5.1 Transient Phase

As described in Sec. 4.2.4, algorithm SORAD needs a short transient phase. During this
phase, the model vector changes are accumulated, and no anomaly detection is allowed. It
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Figure 4.3: Multiobjective plot for different algorithms and thresholds for t > 500. Here, the results for
the A4 data are shown. The FNs and FPs are the sums over the 100 time series of the A4 data.
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Figure 4.4: Multiobjective plot for different SORAD variants and thresholds for all t after the transient
phase. Here, the results for the A1 data are shown. The FNs and FPs are the sums over the 100 time series
of the A1 data.
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Figure 4.6: Comparing results on A4 for various forgetting factors of SORAD. The first curve SORAD-F
shows the results for SORAD with forgetting in RLS; the forgetting factor λ = 0.992 results in the highest
F1 score of F1 = 0.68 in this case. For the second curve SORAD-FMS, the forgetting is applied to the
estimation of µδ and sδ of the error signal distribution as well. The best F1 score on the A4-data with a
value of F1 = 0.83 is reached for a forgetting factor of λ = 0.9805.
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4.5. DISCUSSION

Table 4.1: Results for various algorithms on the Yahoo S5 datasets A1–A4. Shown are TP, FP, FN for
each dataset (sum over all time series, t > 500) and the quantities precision, recall, and F1 for each dataset
(over all time series, t > 500). All algorithms have their threshold chosen such that FP ≈ FN. (Only for
the F1 score in brackets, the threshold is chosen such that F1 is maximized.)

Dataset

Algorithm Measure A1 A2 A3 A4

Offline RAD

TP, FP, FN 73, 101, 54 197, 3, 3 603, 18, 37 312, 382, 395

Precision, Recall 0.42, 0.57 0.98, 0.98 0.97, 0.94 0.45, 0.44

F1 score 0.49 (0.53) 0.98 (0.99) 0.96 (0.96) 0.45 (0.48)

Offline RAD 2-Pass

TP, FP, FN 73, 107, 54 197, 3, 3 615, 36, 25 306, 394, 401

Precision, Recall 0.41, 0.57 0.98, 0.98 0.94, 0.96 0.44, 0.43

F1 score 0.48 (0.5) 0.98 (0.99) 0.95 (0.96) 0.43 (0.49)

SORAD

TP, FP, FN 85, 43, 42 197, 0, 3 627, 16, 13 460, 272, 247

Precision, Recall 0.66, 0.67 1, 0.98 0.98, 0.98 0.63, 0.65

F1 score 0.67 (0.67) 0.99 (0.99) 0.98 (0.98) 0.64 (0.66)

NuPIC

TP, FP, FN 67, 57, 60 91, 102, 109 151, 465, 489 109, 677, 598

Precision, Recall 0.54, 0.53 0.47, 0.46 0.25, 0.24 0.14, 0.15

F1 score 0.53 (0.55) 0.46 (0.48) 0.24 (0.26) 0.15 (0.19)

ADVec

TP, FP, FN 60, 62, 67 114, 65, 86 165, 458, 475 112, 578, 595

Precision, Recall 0.49, 0.47 0.64, 0.57 0.26, 0.26 0.16, 0.16

F1 score 0.48 (0.48) 0.6 (0.64) 0.26 (0.29) 0.16 (0.17)

has proven to be adversarial to start directly with the recursive procedure while the sliding
window is not entirely filled with true data. Our experiments have shown that in such a case,
the estimation of the vector θ tends to be unstable, and the anomaly error rate increases.

4.5.2 Forgetting Factor

Online algorithms open the possibility to add a certain degree of forgetting. We investigated
different forms of forgetting in SORAD. SORAD-F only uses forgetting in RLS. For SORAD-
FMS, the forgetting is applied to the estimation of µδ and sδ of the error signal distribution
as well. Our results indicate that the usual forgetting element in the RLS part (SORAD-
F) does not play a significant role. However, the new element to add forgetting to the
estimation of the error distribution (SORAD-FMS) has proven beneficial in datasets A1
and A4. The increase in F1 score (13%) is most prominent for dataset A4, which is the
dataset with the most significant non-stationary elements. Note that all datasets in the
Yahoo S5 benchmark are relatively short (1500 time steps), thus putting a boundary on the
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Table 4.2: Same as Table 4.1, but now the detection phase is larger (all time steps after the transient
phase), and only the online algorithms (SORAD in different variants, NuPIC, ADVec) are compared. Similar
accuracy as in Table 4.1, but the online algorithms are faster up-and-running. For SORAD-F and SORAD-
FMS the forgetting factor is fixed to λ = 0.98 for all experiments.

Dataset

Algorithm Measure A1 A2 A3 A4

SORAD

TP, FP, FN 94, 62, 58 197, 0, 3 877, 24, 28 648, 301, 331

Precision, Recall 0.6, 0.62 1, 0.98 0.97, 0.97 0.68, 0.66

F1 score 0.61 (0.62) 0.99 (0.99) 0.97 (0.97) 0.67 (0.67)

SORAD-F

TP, FP, FN 95, 59, 57 197, 1, 3 888, 51, 17 672, 331, 307

Precision, Recall 0.62, 0.62 0.99, 0.98 0.95, 0.98 0.67, 0.69

F1 score 0.62 (0.63) 0.99 (0.99) 0.96 (0.96) 0.68 (0.68)

SORAD-FMS

TP, FP, FN 98, 52, 54 197, 1, 3 855, 24, 50 796, 289, 183

Precision, Recall 0.65, 0.64 0.99, 0.98 0.97, 0.94 0.73, 0.81

F1 score 0.65 (0.66) 0.99 (0.99) 0.96 (0.96) 0.77 (0.83)

NuPIC

TP, FP, FN 69, 110, 83 91, 102, 109 177, 816, 728 129, 1034, 850

Precision, Recall 0.39, 0.45 0.47, 0.46 0.18, 0.2 0.11, 0.13

F1 score 0.42 (0.5) 0.46 (0.48) 0.19 (0.2) 0.12 (0.15)

ADVec

TP, FP, FN 81, 171, 71 114, 93, 86 241, 668, 664 147, 844, 832

Precision, Recall 0.32, 0.53 0.55, 0.57 0.27, 0.27 0.15, 0.15

F1 score 0.4 (0.4) 0.56 (0.59) 0.27 (0.3) 0.15 (0.16)

Table 4.3: Computation times of the algorithms on datasets A1–A4. Shown are the average and standard
deviation from 20 runs each. The runs were performed on a PC with an i7-3520M CPU and 8GB of RAM.

Computation Time (s)

Algorithm A1 A2 A3 A4

Offline RAD 7.7± 0.1 11.6± 0.1 12.9± 0.1 12.7± 0.1

SORAD-FMS 21.1± 0.1 31.8± 0.1 35.8± 0.1 36.3± 0.1

NuPIC 368± 5 693± 2 813± 3 828± 4

ADVec 3.3± 0.1 4.8± 0.2 5.6± 0.4 6.0± 0.7

degree of non-stationarity one can observe. For longer time series, the effect of having or
not having a forgetting factor can be much larger.
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4.6. CONCLUSION

4.5.3 Detection Accuracy

This comparative study’s most striking result is that our relatively simple regression anomaly
detection works better on all datasets A1–A4 than NuPIC or ADVec. It has to be said
that NuPIC has a large number of parameters, and we cannot exclude with certainty the
possibility that there might be another parameter set leading to better results for NuPIC.
But we can say that it must be hard to find since even the parameter optimization procedure
built into NuPIC (swarming algorithm) did not reveal such a parameter set.

4.5.4 Other algorithms

Suh et al. [154] propose an echo state network approach to anomaly detection and test it
on Webscope S5, but only for the A1 dataset. Besides methodological issues (they devote
44 complete time series to training, 11 to validation, omit the 45th time series, and perform
their evaluation only on the remaining 11 time series, without cross-validation), their results
for precision / recall / F1 = 0.54 / 0.51 / 0.52 are inferior to the results of SORAD. In [115],
the F1 scores of an CNN-based algorithm (DeepAnT) on A1–A4 are reported: The obtained
F1-scores for A1, A2, A3 and A4 are 0.46, 0.94, 0.87, and 0.68, respectively, which are all
slightly lower than the reported values for SORAD-FMS in Table 4.2.

4.5.5 Limitations of SORAD

Initially, we intended SORAD to act as a baseline algorithm (to show how far simple al-
gorithms get on a particular benchmark and how much further advanced algorithms would
lead). It was a surprise for us that SORAD performed better on A1–A4. We are led to
the conclusion that anomaly detection benchmarks with a larger variety of anomalies are
essential for proper benchmarking.

We do not claim that SORAD is for all time series the better anomaly detector. It
has not enough memory for more complicated long-term interactions. On the Numenta
anomaly detection benchmark NAB [89], where NuPIC achieves good results (F1=0.51),
SORAD does not perform too well in its current form (F1=0.24). Further research effort is
needed here.

4.6 Conclusion

In concluding this chapter, we refer to our research questions from 4.1 by providing the
following summarizing answers:

(1) A simple online regression anomaly detector (SORAD) performs surprisingly well on
the Webscope S5 anomaly benchmark dataset.

(2) It outperforms other anomaly detection algorithms (NuPIC, ADVec) on these
datasets. This is at least true if those algorithms are used with their standard parameter
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settings. A search for better parameter settings for NuPIC using its parameter optimization
routine did not reveal significantly different results.

(3) Our third research question on the importance of the online capability is answered
as follows: We compared algorithm SORAD with its offline sibling (Offline-RAD) and could
thus assess in this comparative study the differences between both: The online variant is
superior to the offline variant (around 40% increase in F1 score on datasets A1 and A4).
We showed that it is crucial to make all elements of the algorithm adaptive, including the
parameters of the error distribution. This underpins the importance of building online and
adaptive anomaly detection algorithms to cope successfully with today’s large data streams.

4.6.1 Possible Future Work

It is necessary to build up more diverse anomaly detection benchmarks and to collect com-
prehensive results of algorithms working on them. As said before, our algorithm SORAD is
not yet good on all anomaly benchmarks. For example, it does not work too well on the Nu-
menta Anomaly Benchmark (NAB). Simple extensions of the algorithm, such as multi-step
ahead prediction (predict several horizons instead of just one), additional non-linear fea-
ture transformations, replacing the RLS algorithm with an kernel-based RLS approach [41],
and the usage of other online approaches for modeling the prediction errors (instead of a
Gaussian distribution) could likely improve the performance of SORAD.

In the following chapter, we will introduce the DWT-MLEAD algorithm, which – con-
trary to SORAD – can analyze time series at different time scales and thus, performs better
on the time series (with longer-range anomalies) of the Numenta Anomaly Benchmark.
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Chapter 5

An Anomaly Detection Algorithm
based on Discrete Wavelet
Transforms

5.1 Introduction

In the previous chapter, we introduced the SORAD algorithm which demonstrated its effec-
tiveness on the Yahoo Webscope S5 benchmark, outperforming other state-of-the-art algo-
rithms. However, the benchmark time series mostly contained only short-term anomalies.
Initial experiments on the Numenta Anomaly Benchmark (NAB) revealed that SORAD has
difficulties with time series with longer-term patterns and anomalies. A common problem
in practice is that anomalies can appear on quite different time scales: they can be spikes
(short-time events) or broader structures (mid- or long-term irregularities). Many anomaly
detection algorithms available today have their strength either in shorter or in longer time
scales, but not in both. However, it is from great practical relevance to have algorithms
which work robustly on diverse time-series data. Thus, the underlying research question for
this chapter is: Is it possible to propose an online-adaptable anomaly detection algorithm
which works robustly on a very diverse set of benchmarks?

We believe that wavelet-based methods could be a suitable approach to answer this
question. Wavelet transforms [111] are commonly used to decompose a time series signal
into accurate time-localized frequency information. This makes them ideally suited to
detect anomalies on different time scales where the time scale is a priori unknown.1

In the context of the above research question, a new algorithm for unsupervised anomaly
detection in time series, called DWT-MLEAD, is introduced in this Chapter. The approach
is based on the discrete wavelet transform (DWT) of time series and the identification
of abnormal behavior on individual frequency scales using a Mahalanobis-distance-based
method. Wavelets allow feature extraction on different frequency levels in different repre-
sentations and allow a timely precise localization of anomalies in time series. Initially, we

1We note in passing that the visual or auditory system of higher vertebrates contains information-
processing structures similar to wavelets [72], thus underpinning the importance of wavelets for natural
computing.
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experimented with an offline version of our algorithm and found that it performs well on
a set of (mostly) stationary time series. On a diverse set of 158 time series (taken from
NAB and the Yahoo Webscope S5 benchmark), the algorithm is compared with three other
state-of-the-art anomaly detectors and it is shown to outperform the other approaches.
Thanks to the linear time complexity of the DWT, the algorithm is also computationally
efficient.

Later in this chapter, we extend DWT-MLEAD to operate fully online. Given streaming
data or time series, the algorithm iteratively computes the (causal and decimating) discrete
wavelet transform. For individual frequency scales of the current DWT, the algorithm now
detects unusual patterns across frequency scales by computing the Mahalanobis distance in
an online fashion. The online DWT-MLEAD algorithm is tested on all 425 time series from
the Yahoo Webscope S5 benchmark and NAB. A comparison to the other state-of-the-art
online anomaly detectors shows that our algorithm can mostly produce results similar to the
best algorithm on each dataset. It produces the highest average F1-score with one standard
parameter setting. That is, it works more stable on high- and low-frequency-anomalies than
all other algorithms. We believe that the wavelet transform is an important ingredient to
achieve this.

This chapter is based on our three earlier publications [162, 164, 165].

5.1.1 Related Work

Although wavelet transforms are widely used in many fields of signal and image processing
and in many data mining tasks such as time series classification, clustering, prediction &
forecasting and similarity search [27], their potential for time series anomaly detection is
only partially exploited. From those techniques found in the literature, most are designed
for high-frequency anomaly detection (e.g. in network traffic data), such as [81, 85]
and [100]. The early work of [6, 5] describes anomaly detection based on non-decimating
wavelet transforms. [74] developed an anomaly detection algorithm for time series, based on
wavelets, neural networks and Hilbert transforms. The algorithm was tested on a relatively
simple benchmark, including two synthetic time series. Shahabi et al. [148] developed an
anomaly detection approach which is based on the visual inspection of the DWT of time
series data. In this chapter, we test our algorithm on two large anomaly benchmarks, one
being the well known Numenta Anomaly Benchmark (NAB, 58 time series, most of them
real-world) [89] and the other being a subset of the Yahoo’s S5 Webscope benchmark [87].
We compare our algorithm with the already introduced state-of-the-art anomaly detectors:
Numenta’s NuPIC, based on Hierarchical Temporal Memory (HTM) [49], our previous
algorithm SORAD (Chapter 4 & [163]) which is specialized on short-term anomalies, and
Twitter’s ADVec algorithm [173].

In the following Section 5.2, we describe the unsupervised algorithm which uses Discrete
Wavelet Transform and Maximimum Likelihood Estimation for Anomaly Detection in
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time series. Note, however, that the name might be slightly misleading. Initially, we
assumed that the data-generating distributions are Gaussian. Hence, we used maximum
likelihood estimation (MLE) to estimate the parameters of a Gaussian distribution (sample
mean and covariance) which are required to compute the Mahalanobis distance. However,
we noticed later that the assumption of normality is not generally necessary since the Ma-
halanobis distance does not impose any conditions on the distribution of the data.
For each time series the DWT-MLEAD algorithm (i) computes a decimating DWT using
Haar wavelets, (ii) estimates a mean and covariance matrix for the individual frequency
scales of the DWT, (iii) flags unusual data points in each frequency scale based on a
(Mahalanobis-distance-based) quantile estimate, and finally (iv) aggregates the unusual
data points of all frequency scales and detects anomalies in the original time series. We
perform a few initial experiments with the offline DWT-MLEAD algorithm and shortly
discuss the results.

In Section 5.3, we describe the necessary modifications in order to make DWT-MLEAD
fully online. In order not to violate causality-constraints, the resulting algorithm is partially
quite different from its offline counterpart. We compare online DWT-MLEAD on all time
series taken from the Yahoo S5 data and NAB. Section 5.2.5 concludes this chapter and
gives an outlook on possible future work.

5.2 The Offline DWT-MLEAD Algorithm

5.2.1 Methods

5.2.1.1 Wavelet Transforms

Wavelet transforms [111] allow to represent a time series signal in terms of waves (the
so called wavelets) with little local support. While (short-time) Fourier transforms always
have a trade-off between accuracy in the frequency domain and accuracy in the time domain,
wavelet transforms are used to retrieve accurate time-localized frequency information. The
wavelet transform of a time series signal is composed with scaling and shifting functions.
They take a mother wavelet and stretch and shrink it (scaling), dilate it along the time
axis (shifting), and finally form the scalar product with the time series. For sampled time
series data, often the so called discrete wavelet transform (DWT) is applied, which has
linear time complexity and can be implemented efficiently for time series streams using
finite impulse response (FIR) filters. Usually a decimating DWT is performed, in which
the filtered series are downsampled. The DWT decomposes the original time series into
so called approximation and detail coefficients which are arranged in different levels. Due
to the decimating (downsampling) property of the DWT one can represent both coefficient
sets in two binary tree structures.

In its current form, DWT-MLEAD performs a decimating DWT using Haar wavelets
(other wavelets are also applicable, but require some additional considerations) on each time
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Figure 5.1: Example of a decimating DWT using Haar Wavelets for a time series of the NAB data. The
original time series is depicted on scale 10. On the scales 5–9 the detail coefficients of the DWT are shown.
While we move towards lower scales, the number of coefficients is decimated (i.e. halved in each step), with
32 coefficients left on scale 5.

series. For this purpose, the R-package wavetresh [117] is used. Since the package requires
the time series to have a length equal to a power of two, we currently artificially extend –
where required – a time series of length n to a length N = 2⌈log2(n)⌉, by mirror copying the
last segment of the original time series into the extended area. However, we do not consider
anomalies which are detected at instances > n. DWT-MLEAD utilizes both the detail
coefficients dk,ℓ and the approximation coefficients ck,ℓ, computed by the DWT (lines 7–8 in
Algorithm 4), where ℓ addresses the level and k ∈ 1, . . . , N the time index.

The lowest level ℓ = log2(N) contains only one coefficient. The highest level ℓ = 0 has
no approximation coefficients but only detail coefficients dk,0 which represent the original
time series. Since lower levels of the DWT usually do not contain patterns which are useful
for anomaly detection, only the L highest levels (L is a parameter of the algorithm) are
considered, where ℓ = L − 1 describes the lowest considered level and ℓ = 0 addresses the
highest possible level (the original time series). In Fig. 5.1 the DWT of a time series from
NAB is illustrated.
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5.2.1.2 Sliding Windows

In order to express temporal relationships, a simple and common approach in many machine
learning tasks involving time series is to employ sliding windows of a certain size w (e.g.
w = 10), which are used to generate fixed-sized input vectors for a model. Our algorithm
employs an individual sliding window for the detail and approximation coefficients at each
level of the DWT tree.

By stacking the transposed input vectors, we obtain a matrix X with w columns which
can be used to train a model. In the DWT-MLEAD algorithm (Algorithm 4, lines 10–11), a
window of size wℓ is slid over the detail and approximation coefficients dk,ℓ and ck,ℓ at each
DWT level ℓ ∈ {ℓ′, . . . , L} in order to generate the matrices D(ℓ) and C(ℓ). Subsequently,
for each matrix a mean vector and a covariance matrix are estimated, as described in the
following.

5.2.1.3 Detecting Unusual Patterns on Individual Frequency Scales

In order to distinguish between normal and unusual patterns in the individual levels of the
DWT, our algorithm estimates two parameters for each considered level: a mean vector
x̄ and a covariance matrix Σ̄. This is done separately for the approximation and detail
coefficients (cn,ℓ and dn,ℓ). The function estimate in Algorithm 5 estimates x̄ and Σ̄ for a
given matrix X, where X ∈ Rn×wℓ , with n = N − w + 1 being the number of input vectors
generated by sliding the window over the time series, x̄ ∈ Rwℓ is a w-dimensional vector,
which indicates the center of the distribution, and Σ̄ ∈ Rwℓ×wℓ describes the covariances
between individual dimensions. The dimensions of both quantities depend on the length of
the sliding window wℓ used in each level of the DWT. In Algorithm 4, line 13, DWT-MLEAD
estimates both parameters for each D(ℓ) and C(ℓ).

For a given estimate (x̄, Σ̄), one can compute the so-called squared Mahalanobis distance
for a new observation xi ∈ Rwℓ :

m(xi) = (xi − x̄)TΣ̄
−1

(xi − x̄) (5.1)

The Mahalanobis distance is a measure which can be used as an indicator for unusual
behavior. If the Mahalanobis distance is large, it is likely that the observed point x does
not represent a normal instance.

Note that using the Mahalanobis distance in this sense as anomaly indicator does not
require any assumption about the distribution of the data xi. It is often found in the
literature that Mahalanobis distance requires the data to be normally distributed, but this
is not necessary to make m(xi) a useful norm. (If the data were Gaussian distributed, then
m(xi) would follow a Chi-Squared distribution, as derived in Appendix B.3, but we do not
need this fact in our algorithm.)

For every entry in D(ℓ) and C(ℓ) we compute and collect the squared Mahalanobis dis-
tances in a vector m using the previously determined parameters x̄ and Σ̄. This is done in
function mahalanobis of Algorithm 5.
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Figure 5.2: Detecting anomalies with leaf counters. Along the vertical axis are the DWT levels ℓ, along
the horizontal axis are the time indices k. The leftmost event e thus comes from either an unusual c1,L−2 or
d1,L−2. Each event increases the leaf counters (blue rectangles) connected with the e node. Only counters
with count ≥ 2 are shown.

5.2.1.4 Quantile Boundaries

In order to separate unusual from usual window patterns in D(ℓ) and C(ℓ), one has to find a
suitable threshold for the squared Mahalanobis distance. We use an empirical ϵ-quantile mϵ

(e.g. the 99th percentile) to determine the threshold. After determining mϵ in Algorithm 4,
line 15, instances are flagged as ”unusual” in a binary vector a if their (squared) Mahalanobis
distance mi lies above mϵ (line 16).

5.2.1.5 Leaf Counters

For each instance in the original time series the DWT-MLEAD algorithm maintains a leaf
counter hi. If an instance ck,ℓ or dk,ℓ on a certain level ℓ of the DWT is flagged as unusual
(has a flag ak = 1) then an event e – marked as a black node in Fig. 5.2 – is passed down
the DWT tree to all leaf nodes connected with the e node. Each leaf node has a counter hi

(blue rectangles in Fig. 5.2) which counts all such events (Algorithm 4, line 17). After all
events are processed, all counters with a count hi < 2 are deleted (line 18).

5.2.1.6 Detecting the Anomalies

Once all the leaf counters are updated, DWT-MLEAD forms clusters Cj of all leaf counters
hi having a neighbor not more than dmax apart (Algorithm 4, line 19). Specifically, a cluster
Cj is here a set of counters, each counter carrying its leaf position in the original time series
and its event count. For each cluster Cj a sum sj over all event counts is computed. In
Fig. 5.2 for example, all counters form one cluster with sum sj = 9. If a sum sj exceeds the
predefined threshold B, then the center of cluster Cj is labeled as anomaly event (line 24).
The center µ(Cj) of cluster Cj is the weighted center of mass of all leaf positions, where the
weights are the event counts.
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Algorithm 4 Offline DWT-MLEAD, an anomaly detection algorithm based on the Discrete
Wavelet Transform (DWT).

1 Define:
2 L: Number of levels considered in the DWT

3 ϵ for computation of quantiles (e.g., the 1st percentile)

4 dmax: maximum distance for same-cluster points

5 B: threshold for the counter sum in a cluster that triggers an anomaly

6 function mleAnomaly(y = (y1, y2, . . . , yN)) ▷ N is a power of 2

7 Compute DWT of y for levels ℓ ∈ {0, . . . , L− 1}
8 Get detail coefficients dk,ℓ and approximation coefficients ck,ℓ of DWT

9 Initialize a leaf counter hi = 0 for each yi, counting the events it receives

10 Set window sizes for each level: wℓ = max{2, log2(m)− ℓ}
11 ∀ℓ ∈ {0, . . . , L− 1}: Build D(ℓ), C(ℓ) by sliding window of size wℓ over dk,ℓ, ck,ℓ

12 for all X ∈ {D(ℓ),C(ℓ) | ℓ = 1, . . . , L− 1} ∪D(0) do

13 (x̄, Σ̄) = estimate(X) ▷ Defined in Algorithm 5

14 m = mahalanobis(X, x̄, Σ̄) ▷ Defined in Algorithm 5

15 Determine threshold mϵ as empirical ϵ-quantile or with mϵ = χ2
1−ϵ(wℓ)

16 a = predict(m,mϵ) ▷ Defined in Algorithm 5

17 For all ai = 1: Trigger an event moving down the tree to any connected leaf

18 When all events are processed: Delete all event counters with count hi < 2

19 Form clusters Cj of leaf counters having a neighbor not more than dmax apart

20 S = {} ▷ Set of detected anomalies

21 for all Cj do

22 sj = sum of counter values in Cj

23 if sj > B then

24 S = S ∪ {µ(Cj)} ▷ Add center µ(Cj) of Cj to anomaly set

25 return S
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Algorithm 5 Helper functions for Algorithm 4.

1 function estimate(X)

2 x̄ = 1
n

∑n
i=1 xi ▷ Vetor xi ∈ Rw is the ith row of matrix X ∈ Rn×w

3 Σ̄ = 1
n−1

∑n
i=1 (xi − x̄)(xi − x̄)T

4 return (x̄, Σ̄)

5

6 function mahalanobis(X, x̄, Σ̄)

7 m : vector of size Rn ▷ n is the number of rows in X
8 for each row xi of X do

9 mi = (xi − x̄)TΣ̄
−1

(xi − x̄)

10 return m

11

12 function predict(m, mϵ)

13 a: vector of same size as m
14 for all ai do

15 ai =
{

1, if mi > mϵ
0, otherwise ▷ Binary anomaly flag vector

16 return a

5.2.2 Algorithms and their Settings

In the following, we compare DWT-MLEAD with three online anomaly detection algorithms,
namely SORAD, NuPIC, and ADVec. We compare the algorithms on the A3 data of
Yahoo’s Webscope S5 benchmark and on NAB (introduced in 2.3). Although we did not
systematically tune the parameters of each algorithm, we empirically determined for each
algorithm and each dataset the best parameters from an informal search.

DWT-MLEAD Overall, three main parameters in Algorithm 4 have to be set, which
are fixed for the whole dataset: a threshold ϵ ∈ [0, 1] for the ϵ-quantiles, which is varied to
adjust the tradeoff between precision and recall, a parameter B (threshold for counter sum),
and the number of considered levels L. From Sec. 5.2.1.4, we use the empirical quantiles for
the NAB data and the χ2-based quantiles for the A3 data. We empirically determined the
setting B = 3.5, L = log2(N) − 5 for the NAB data and B = 1, L = log2(N) − 7 for the
A3 data (longer time series also consider more DWT levels). The window size wℓ is set by
Algorithm 4 in a level-dependent fashion. In its current form the DWT-MLEAD algorithm
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Table 5.1: Results for various algorithms on the A3 and NAB dataset. Shown are the sums of TP, FP, FN
over all time series and the metrics precision, recall and F1, cf. Eqs. (2.1)–(2.3), derived from these sums.
All algorithms have their threshold chosen such that F1 is maximized (in brackets: F1 for threshold such
that FP ≈ FN).

Dataset Algorithm Threshold TP FP FN Precision Recall F1 Score

A3

DWT-MLEAD 0.015 806 8 44 0.99 0.95 0.97 (0.95)

NuPIC 0.4 172 267 678 0.39 0.2 0.27 (0.26)

SORAD 10−4 810 22 40 0.97 0.95 0.96 (0.96)

ADVec 20 190 216 660 0.47 0.22 0.3 (0.26)

NAB

DWT-MLEAD 0.02 69 65 46 0.51 0.6 0.55 (0.55)

NuPIC 0.55 76 113 39 0.4 0.66 0.5 (0.47)

SORAD 10−9 57 313 58 0.15 0.5 0.24 (0.21)

ADVec 100 66 164 49 0.29 0.57 0.38 (0.34)

operates offline on each time series, the remaining algorithms investigated in this section
are all online.

SORAD The algorithm’s parameters which are set as follows for the experiments: We set
the forgetting factor of the algorithm to λ = 0.98, the anomaly threshold ϵ will be varied
over a larger range, and the window-size is set to w = 10 for the A3 data and to w = 200
for the NAB data.

NuPIC NuPIC is described in Section 3.1.2. We use the standard parameter setting for
all experiments. The only parameter which is adjusted by us is an anomaly threshold that
can be varied in the interval [0,1] and – similar to ϵ in SORAD and DWT-MLEAD – trades
off precision and recall.

ADVec Twitter’s ADVec Algorithm (Section 3.1.1) is the last algorithm which we will
review in this section. The algorithm requires three main parameters, which are as follows:
The first parameter α is used as anomaly threshold. The second parameter, the period-
length, is fixed to the value 40, which has shown to give the best results on the investigated
data. Finally, we found that the setting of the parameter maxanoms is crucial for the per-
formance of ADVec, especially on the NAB dataset. We choose maxanoms = 1% for the A3
data and maxanoms = 0.1% for the NAB data.
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Table 5.2: Computation times of the algorithms on datasets A3 and NAB. Shown is the average and
standard deviation from 20 runs each. The runs were performed on a PC with an i7-3520M CPU and 8 GB
of RAM.

Computation Time (s)

Dataset DWT-MLEAD SORAD NuPIC ADVec

A3 13.6± 0.3 34.6± 0.1 810.9± 1.3 2.6± 0.2

NAB 12.2± 0.2 111.6± 0.2 1636.4± 2.7 5.8± 0.5

5.2.3 Results for the Offline DWT-MLEAD Algorithm

Table 5.1 summarizes the results for the four algorithms on the A3 and NAB data. On the
A3 data with short-term anomalies, DWT-MLEAD and SORAD both clearly outperform
the other algorithms NuPIC and ADVec, achieving both, a high precision and recall. NuPIC
and ADVec produce a large amount of FP and at the same time miss most of the true short-
term anomalies. For the NAB data we observe rather different results: while DWT-MLEAD
still outperforms the remaining algorithms according to the overall F1 score, SORAD now
performs the worst according to all metrics. In particular, the precision is rather low for
SORAD, due to the large number of FP. NuPIC delivers similar results as DWT-MLEAD,
with a slight advantage for DWT-MLEAD.

Two example time series from the NAB data with the detections of the individual al-
gorithms are shown in Fig. 5.3. In the first example it can be clearly seen that SORAD
produces many FP at the recurring spikes in the time series. This is due to the fact that
SORAD has no long-term memory so that such recurring spikes appear to be anomalous.
Only DWT-MLEAD and ADVec detect both anomalies in both examples, although ADVec
produces a few more false-positives.

All algorithms examined in this section have a threshold which can be varied in a certain
range and which trades off FP and FN (as well as precision and recall) to a certain extent.
In Fig. 5.4 the precision is plotted against the recall for different thresholds. For the A3
data the recorded points of DWT-MLEAD and SORAD clearly dominate those of NuPIC
and ADVec. For the NAB data the results are more diverse: while SORAD shows the worst
performance of all algorithms, DWT-MLEAD and NuPIC show the best performance, with
NuPIC having a slightly higher precision in larger recall ranges (recall > 0.6) and DWT-
MLEAD in the lower recall ranges (recall < 0.6).

In Table 5.2, the computation times for the four algorithms on the A3 and NAB data
are shown (mean and standard deviation from 20 runs). Overall, ADVec shows the best
results regarding the computation time. On the A3 (NAB) data DWT-MLEAD is faster by
a factor of 2.5 (9) than SORAD and 60 (134) than NuPIC.
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Figure 5.3: Example time series taken from the NAB data with the anomalies detected by the algorithms
DWT-MLEAD, NuPIC, ADVec, and SORAD. The red vertical bars in the plot indicate the true anomaly
windows. True-positives are indicated by green colors while False-positives are colored red.

Figure 5.4: Multiobjective plot for the NAB and A3 dataset. Precision and recall are computed based on
the results of all time series of the corresponding data set.
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5.2.4 Discussion

The wavelet transform allows to capture features of the time series on different frequency
levels. This is beneficial for detecting both long- and short-term anomalies. It is thus not
unexpected that DWT-MLEAD is the only algorithm in our comparison which performs
equally well on both benchmarks A3 and NAB. The event pooling mechanism shown in
Fig. 5.2 with a minimum event count of 2 in each leaf counter is effective in shielding
against noise which may produce an unusual event in just one frequency level. As expected,
SORAD operates only well on short-term anomalies, since it analyzes only a short-term
window in the original time series.

The algorithm DWT-MLEAD in its current form has these limitations:

� It is offline, i. e. the anomaly detection is undertaken when the whole time series is
available. (It is still unsupervised since no information about prior anomalies is given
to the algorithm.). This limitation will be lifted in Section 5.3.

� We assume a certain degree of stationarity for the algorithm to work. Trends and
change-points cannot be handled well in the offline form. A (semi-)online version could
offer more flexibility in the sense that trends and change-points can be learned.

� If a time series has long-term periodic structures, not all anomalies might be detected
correctly. This can happen if the frequency of the long-term periodic structure is lower
than the lowest wavelet level ℓ considered in Algorithm 4. In such cases it might help
to extend the algorithm by a periodicity detector and subtract such a periodicity prior
to analyzing the time series with DWT-MLEAD.

5.2.5 Summary

We have shown that the discrete wavelet transform (DWT) is beneficial for detecting anoma-
lies in time series on various time scales. Specifically, our new algorithm DWT-MLEAD
shows consistently good results on two larger benchmarks, one containing short-term anoma-
lies (A3) and the other containing long-term anomalies (NAB). We tested this algorithm
against three other state-of-the-art anomaly detectors and found DWT in first place on
both benchmarks. It is remarkable that a single algorithmic principle works well over such
a diverse set of time series. Due to the efficient implementation available for DWT, our
algorithm is computationally efficient (fast) as well. However, as mentioned before, DWT-
MLEAD is not online yet. In the following section, we add several modifications to the
algorithm to operate fully online.

5.3 Online-Adaptable DWT-MLEAD Algorithm

In order to turn the offline DWT-MLEAD algorithm, presented in the previous section, into a
fully online algorithm, several points have to be taken into consideration: In an online setup,
a causal implementation of all algorithm’s components is required. The DWT, the sliding
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window approach, the estimation of mean and covariance, and the event detection on the
individual layers of the DWT tree have to be modified to satisfy the causality requirement.
Furthermore, not all components can be directly translated into an incremental (online)
version. For example, it is not straight-forward to estimate a weighted sample mean and
covariance matrix incrementally, and an online version has to be derived (see Appendix
B.2). Also, stability issues in online settings have to be considered while ensuring that
the model acquires new knowledge as fast as possible (stability-plasticity dilemma). In the
following we present a solution for an online DWT-MLEAD algorithm and study it on a
comprehensive benchmark.

5.3.1 Online and Causal DWT & Sliding Windows

The online DWT-MLEAD algorithm also utilizes both the detail coefficients dk,ℓ and the
approximation coefficients ck,ℓ. For the online implementation of the algorithm, a strictly
causal computation scheme is adhered to: For example, two data points in the original time
series have to be collected first before the next coefficient in level ℓ = 1 can be computed.
Similarly, 2ℓ data points from the original time series are necessary to compute the next
coefficient in level ℓ.

We experimented with the length of the sliding windows and found that for the online
version of DWT-MLEAD, window sizes in the form of wℓ = max{1, ⌊bo−ℓ⌋} appear to be
the best choice. b, o ∈ R are two additional hyperparameters of the algorithm. As soon as a
new coefficient in level ℓ is available (cn,ℓ or dn,ℓ), the corresponding window is slid one step
further and the new window embedding is collected and passed to a model, which estimates
the likelihood of observing such a vector. Unlikely vectors would indicate unusual behavior
on the corresponding DWT level. The sliding windows at lower levels are moved with a
slower rate than those on higher levels, since new coefficients are only generated after every
2ℓ time steps in the original time series. This is necessary, to ensure causality of the system.

Anomaly detection starts after an initial transient phase, when the sliding windows can
be completely filled.

5.3.2 Online Estimation of the Mean and Covariance Matrix

Since the DWT-MLEAD algorithm operates in an online fashion, the parameter estimations
also have to be updated incrementally for each new data point. For this purpose we use
an exponentially decaying weighted estimator with an forgetting factor λ ∈ (0, 1]. The
forgetting factor controls at which rate past observations fade out over time. A value of λ
close to 1 results in an algorithm with a very long memory, whereas small values (usually
not smaller than 0.9) can significantly limit the memory of the estimator. By allowing the
estimator to gradually forget historic information, the algorithm can adapt to new concepts
in the data stream. Furthermore, with λ < 1 we can prevent (under most conditions) a
numeric overflow of the required accumulator (the sum of squares of differences from the
current mean). However, forgetting can also lead to a higher variance in the parameter
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estimates. The pseudo-code of the estimator can be found in Alg. 7, lines 1 – 8. Note that
it is not actually necessary to compute the covariance matrix, since only its matrix inverse
is required in later steps. Therefore, we directly estimate the inverse of the sum of squares
of differences from the current mean M̄

−1
n . Since the inverse M̄

−1
n has to be re-computed

for every new data point, which can be computationally expensive for larger dimensions, we
use the Sherman-Morrison formula [150] to incrementally update M̄

−1
n . The inverse of the

covariance matrix is given by Σ̄
−1
n = WnM̄

−1
n . A detailed derivation of the exponentially

decaying estimator of the mean and covariance matrix is given in Appendix B.2.

5.3.3 Detecting Events in the DWT Tree and Anomaly Detection

Since DWT-MLEAD estimates a mean and covariance matrix for every set of DWT-
coefficients on the levels ℓ ∈ [0, 1, . . . , L], it is possible to examine each newly observed
value cn,ℓ and dn,ℓ in the context of its current sliding window in order to detect unusual
patterns. For each new data point the current window embed vector is determined and
the squared Mahalanobis distance mxn to the center of the distribution is computed for
this vector. Subsequently, this distance is compared to a threshold mϵ. We assume that
xn is roughly Gaussian distributed. Since a Gaussian random variable has a squared
Mahalanobis distance to its mean, which is Chi-squared (χ2) distributed with wℓ degrees
of freedom, we set mϵ by simply computing the (1 − ϵ)-quantile of the χ2-distribution
(function predict in Algorithm 7, lines 10–15). Although the assumption of a Gaussian
distribution is often violated in practice, we found that the threshold mϵ, determined based
on the χ2-distribution, usually is a reasonable choice. We also experimented with other
online approaches, such as the P 2 algorithm [70], designed to incrementally track quantiles,
but found the χ2-quantiles to deliver better results.

If the Mahalanobis distance mxn exceeds the threshold mϵ, the current instance cn,ℓ or
dn,ℓ is flagged as unusual and an event e is passed down the DWT tree, as illustrated in
Fig. 5.5. Events arriving at the leaf nodes are summed up in a global, exponentially decaying
event counter Ei (Algorithm 6, line 25). If the activity in a subtree of the DWT exceeds a
certain limit, hence, if many events are produced in a short time, Ei will increase fast. As
soon as Ei is larger than a specified threshold B, an anomaly will be fired and the instance
i in the time series will be flagged. In order to avoid many detections in a short time, a new
anomaly cannot be fired again until Ei has faded away and falls below threshold 2

3
B.

In order to detect extreme outlier events, a simple heuristic is used: The algorithm flags
a point as anomalous, if it exceeds the current minimum/maximum by more than 20% of
the min-max range.

5.3.4 Algorithmic Setup

In this section, we compare online DWT-MLEAD to two other online anomaly detection
algorithms. For each algorithm one standard parameter setting is chosen which is then
used for all experiments across all datasets. Only an anomaly threshold parameter is varied
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Algorithm 6 An online version of DWT-MLEAD, an anomaly detection algorithm using
the Discrete Wavelet Transform.

1 Define parameters:

2 L: maximum number of levels considered in the DWT
3 b, o: for the computation of the sliding window sizes wℓ

4 λ: forgetting factor for the estimation of the Gaussian distributions

5 ϵ: quantile of χ2-distribution

6 B: threshold for global event counter that triggers an anomaly

7

8 Initialize:

9 Set window sizes for each level: wℓ = max{1, ⌊bo−ℓ⌋}
10 Global event counter: E0 = 0

11 Discount factor: γ = wL−1
wL+1

12 Allow to trigger anomaly with: A = true

13 Initialize all P
(c,ℓ)
0 and P

(d,ℓ)
0 with the tuple (W0, x̄0, M̄

−1
0 , M̄0), where:

14 W0 ∈ R, x̄0 ∈ Rwℓ and, M̄
−1
0 , M̄0 ∈ Rwℓ×wℓ

15 W0 = 0, x̄0 = 0, M̄
−1
0 = M̄0 = I

16

17 function DWTMLEAD(i, yi) ▷ where y = (y1, y2, . . .) is a streaming time series

18 Determine ℓ′ = min(L− 1,max{ℓ∗ ∈ N0 | i mod 2ℓ∗ = 0})
19 for all ℓ ∈ {0, . . . , ℓ′} do
20 n = i/2ℓ

21 Compute DWT coefficients cn,ℓ and dn,ℓ ▷ if not already present

22 x
(c)
n = (cn−wℓ+1,ℓ . . . cn,ℓ)⊺ , x

(d)
n = (dn−wℓ+1,ℓ . . . dn,ℓ)

⊺ ▷ sliding windows

23 P
(c,ℓ)
n = update(P

(c,ℓ)
n−1 , x

(c)
n , λ) , P

(d,ℓ)
n = update(P

(d,ℓ)
n−1 , x

(d)
n , λ)

24 eℓ = predict(P
(c,ℓ)
n , x

(c)
n , ϵ) + predict(P

(d,ℓ)
n , x

(d)
n , ϵ)

25 Ei = γEi−1 +
∑ℓ′

j=0 ej ▷ Adjust global event counter

26 ai =
{

true, if A ∧ Ei ≥ B
false, otherwise ▷ Flag anomaly at time step i, if threshold is exceeded

27 if ai then A = false

28 if Ei <
2
3
B then

29 A = true ▷ Allow new anomaly, if event-counter value falls below threshold

30 return ai
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Figure 5.5: Detecting anomalies online with leaf counters. All coefficients (except on the leafs) are always
computed bottom-up, based on two child nodes (connected with one dashed and one solid edge). Along
the vertical axis are the DWT levels ℓ, along the horizontal axis are the time indices n of the coefficients of
the DWT. E.g., the leftmost event e comes from either an unusual cn,2 or dn,2. Each event is passed down
the tree only along the solid edges (causal computation) and increases the right-most leaf counter (blue
rectangle) connected with the e node.

for each algorithm and dataset in order to balance precision and recall in a way that the
F1-score is maximized.

DWT-MLEAD As described in Sec. 5.3, in total 6 parameters have to be selected by the
user. In order to find an appropriate setting, we did not systematically tune the parameters.
Instead, we generated 60 design points using latin hypercube sampling (LHS) and evaluated
the algorithm on all time series for these points. The setting B = 2.20, b = 2.27, o = 6,
L = 5, λ = 0.972 achieved the highest average F1-score and will be used throughout the
rest of this paper. The parameter ϵ is used as anomaly threshold and is adjusted in the
range ϵ ∈ [10−6, 10−1]. Additionally, to exclude the possibility of overtuning on the data
sets, we made the following experiment: We separated the set of all time series in a training
and a test set (each containing 50% of the time series) and tuned the parameters of DWT-
MLEAD only on the training data. Then the F1-score was established only on the test set.
The results will be given below under the name TRAIN-TEST-SEP.

NuPIC Similarly to the previous section, we run NuPIC with its standard parameter
settings. Similarly to DWT-MLEAD, an anomaly threshold can be varied in the interval
[0, 1] to control the sensitivity of the algorithm.

ADVec The main three parameters were tuned to achieve the highest average F1-score.
The period-length is set to 40. The second parameter maxanoms is set to maxanoms = 0.003.
The last parameter α is used as anomaly threshold for ADVec and is adjusted in the range
α ∈ (10−6, 1).
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Figure 5.6: Example time series taken from the Yahoo Webscope S5 data and the Numenta Anomaly
Benchmark (NAB). In each graph the real anomalies are indicated by the light-red shaded areas. Three
algorithms are tested on this data and the individual detections are shown with different symbols. The
color of the symbol indicates if the detections were correct (green) or false (red).
Top two rows: One example each from the A1–A4 data. The dashed vertical lines in the A4 data indicate
concept changes which should also be detected by the anomaly detectors.
Bottom: Example time series taken from the NAB data. The graph shows the temperature sensor data
of an internal component of a large industrial machine over its last few months of operation. The second
anomaly (mid of December) is a planned shutdown of the machine. The catastrophic failure occurs end of
February when the recordings end.
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Algorithm 7 Helper functions for Algorithm 6.

1 function update(Pn−1,xn, λ) ▷ xn ∈ Rwℓ , wℓ is the size of the window at scale ℓ

2 (Wn−1, x̄n−1, M̄
−1
n−1, M̄n−1) = Pn−1 ▷ Matrix M̄n−1 is optional (debugging purposes)

3 Wn = λWn−1 + 1

4 ∆n = xn − x̄n−1

5 x̄n = x̄n−1 + 1
Wn

∆n

6 M̄n = λM̄n−1 + ∆n(xn − x̄n)⊺ ▷ Optional, since only inverse M̄
−1
n is required later

7 M̄
−1
n = 1

λ
M̄

−1
n−1 −

1
λ
M̄

−1
n−1∆n(xn−x̄n)⊺M̄

−1
n−1

λ+(xn−x̄n)⊺M̄
−1
n−1∆n

▷ Sherman-Morrison Formula

8 return (Wn, x̄n, M̄
−1
n , M̄n) ▷ Return updated parameters

9

10 function predict(Pn,xn, ϵ) ▷ xn ∈ Rwℓ , where wℓ is the size of the window at scale ℓ

11 (Wn, x̄n, M̄
−1
n , M̄n) = Pn

12 mxn = Wn(xn − x̄n)⊺M̄
−1
n (xn − x̄n) ▷ Mahalanobis distance of xn to x̄n

13 mϵ = χ2
1−ϵ(wℓ) ▷ Threshold: upper ϵ-quantile of χ2-distribution

14 en =
{

1, if mxn > mϵ
0, otherwise ▷ Binary event flag

15 return en ▷ Unusual data points will cause an event in the DWT-tree

SORAD We tried to manually select the parameters of SORAD. However, we could not
find a good compromise for the parameters, to obtain good results on the Yahoo data and
NAB. Hence, we choose the same setting as in Section 5.2.2 and set the forgetting factor of
the algorithm to λ = 0.98, and the window-size is set to w = 10.

5.3.5 Results

The main results of our experiments are summarized in Tab. 5.3. DWT-MLEAD achieves
on all datasets the highest F1-score (the same as SORAD on A1,A2, and A4). NuPIC has
a slightly better precision on A1, but on A2, A3 and A4 the difference in all three metrics
is large in favor of DWT-MLEAD. One reason, among others, for the weak performance of
NuPIC and ADVec could be that the time series in both datasets contain many anomalies,
occurring in part at the very beginning of each time series. Hence, the algorithms have to be
up-and-running much faster and have to be able to detect anomalies in short time intervals.
Furthermore, the A4 time series contain many concept changes, where amplitudes, season-
alities and noise abruptly change. In order to handle such concept changes, a strong online
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Table 5.3: Results for various algorithms on the datasets A1–A4 and NAB. Shown are the metrics precision
(how many percent of the detected events are true anomalies), recall (how many percent of the true anomalies
are detected) and F1. All algorithms have their threshold for each dataset chosen such that F1 is maximized.
Each algorithm uses otherwise one standard parameter setting for all data sets. The values in square brackets
show the F1-score on the test data of the experiment TRAIN-TEST-SEP.

Precision, Recall
F1-Score

Algorithm A1 A2 A3 A4 NAB Avg

DWT-MLEAD
0.60, 0.65 1, 0.98 0.96, 0.97 0.92, 0.75 0.66, 0.45 0.8, 0.76
0.62 [0.66] 0.99 [0.99] 0.97 [0.97] 0.83 [0.83] 0.54 [0.52] 0.79 [0.80]

SORAD
0.65, 0.67 1, 0.98 0.97, 0.95 0.9, 0.77 0.09, 0.57 0.7, 0.8

0.66 0.99 0.96 0.83 0.15 0.72

NuPIC
0.62, 0.45 0.59, 0.42 0.39, 0.20 0.41, 0.11 0.40, 0.66 0.32, 0.37

0.52 0.49 0.27 0.18 0.5 0.39

ADVec
0.51, 0.56 0.66, 0.6 0.54, 0.20 0.29, 0.15 0.11, 0.72 0.32, 0.45

0.54 0.63 0.29 0.2 0.2 0.37

adaptability is required. For the NAB data, the difference in F1-score between NuPIC and
DWT-MLEAD is not that apparent, although there is a slight advantage for our algorithm.
Overall, we can observe in column Avg that DWT-MLEAD achieves the highest average
values for all three metrics.

The results in Tab. 5.3 are for tuning on all data. The additional experiment TRAIN-
TEST-SEP (see Sec. 5.3.4) revealed very similar F1-scores (less than 1% deviation in the
Avg score). This observation confirms that DWT-MLEAD operates well on new data and
is not overtuned to its parameters.

Since Tab. 5.3 only captures the results for one specific setting of the algorithms anomaly
thresholds, we also measured precision and recall for a wide range of thresholds and plotted
them against each other, as shown in Fig. 5.7. The overall picture mostly corresponds to
the results shown in Tab. 5.3. Only for the NAB data we can observe that for recall values
in the range [0.5, 0.75] NuPIC achieves a higher precision and outperforms DWT-MLEAD.
Finally, a look on Tab. 5.3 shows that the NAB dataset is a tough benchmark: All tested
algorithms are far from being perfect on that dataset, having F1 < 0.55, i.e. there is still
room for improvement.

5.3.6 Discussion

Although algorithm DWT-MLEAD could produce good results on the investigated bench-
marks, it still has several limitations which leave room for improvement:
(1) For our experiments we only used the relatively simple Haar wavelet. This leads to the
limitation that anomalies manifesting themselves in complex frequency patterns might be
difficult to detect. Wavelets with stronger localization in the frequency domain (e.g. Gabor
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Figure 5.7: Multiobjective plot for Yahoo’s Webscope S5 benchmark and the Numenta Anomaly bench-
mark. The graph for the A2 data is not shown here since the results are very similar to the A3 data.

wavelets or ensembles of such wavelets) might allow to detect frequency changes more reli-
ably.
(2) Due to the strictly causal design of the algorithm, events occurring in the DWT-tree
might be asymmetrically distributed along the leaf counters (Fig. 5.5). More events will
tend to arrive at the leaf nodes on the right side of each sub-tree, which might lead to
undesired effects.2

(3) Using the Mahalanobis-distance-based metric for the sample mean and covariance ma-
trix to detect unusual behavior might not be the best choice. Other (perhaps multimodal)
distributions might be more effective. To test this, we made some runs with Gaussian
mixture models (GMM) which are capable to model more complex distributions. So far,
however, these runs resulted in only marginal improvements.

2We note in passing that we performed runs with an algorithmic variant where we treated each leaf
symmetrical: We wait until an L-subtree is complete, then we collect all events (along the dashed lines in
Fig. 5.5 as well) and process them. The price to pay is a certain delay for some leafs and a deviation from
the strict online scheme. The results in terms of precision-recall-metrics are a bit better for NAB and a bit
worse for A4. Overall, the difference is only marginal.
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The NAB dataset is a challenging benchmark, as it includes mostly real world data from
many different applications. The time series contain anomalies in high and low frequencies
in a large variety of forms. Many anomalies are also very hard to detect for the human eye
without suitable domain knowledge.
It is worth mentioning that DWT-MLEAD proved to perform robustly on all time series,
without ever showing numerical instabilities from the matrix updates (function update in
Algorithm 7).

5.4 Conclusion & Possible Future Work

In this chapter, we introduced the relatively simple but effective DWT-MLEAD algorithm
for offline and online anomaly detection in time series. Generally, the development of widely
applicable anomaly detection algorithms is possible when suitable features can be obtained.
We found that especially the discrete wavelet transform (DWT) can be an important tool to
generate meaningful features across many different frequency scales. Empirical results on a
large dataset with 425 time series containing both long-term and short-term anomalies show
that DWT-MLEAD is more robust than other state-of-the-art anomaly detectors: Using
only one fixed parameter setting, (online) DWT-MLEAD achieved an average F1 twice as
large as ADVec’s & NuPIC’s scores and 10% higher than SORAD’s. Furthermore, DWT-
MLEAD significantly outperformed SORAD on the NAB data, obtaining a 260% higher
F1-score. Furthermore, the online adaptability of the DWT-MLEAD algorithm appears to
be beneficial in the presence of concept drifts and/or changes, as the results on the A4 data
of Yahoo’s Webscope S5 benchmark suggest. Our anomaly detection algorithm does not
require labeled training data; it is unsupervised and infers from the unlabeled data of each
time series what is normal and what is anomalous.

As future work several aspects of our algorithm can be improved: Currently, only simple
Haar wavelets are used for the offline and online version of the algorithm; experiments with
other wavelets or ensembles of wavelets might lead to a significantly increased performance.
Furthermore, it might be possible to further reduce the sensitivity of DWT-MLEAD towards
its parameters, for example with automatic parameter tuning methods. Finally, also an
extension to multivariate time series should only require a few additional steps.
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Chapter 6

Learning Quasi-periodic ECG Time
Series with LSTM Networks

6.1 Introduction

The previous chapter introduced the DWT-MLEAD algorithm and demonstrated its effec-
tiveness when applied to time series where anomalies appear on different frequency scales.

However, even with DWT-MLEAD, it is challenging to process time series with complex
periodic or quasi-periodic behavior where an anomaly might be a time-shifted peak, a peak
with a different shape, or other patterns. For such cases, an algorithm has to learn long-
term correlations in the data accurately to detect anomalies reliably. A prominent real-world
example where quasi-periodic signals have to be analyzed is in electrocardiography. In an
electrocardiogram (ECG), the heart’s activity is monitored over time by measuring voltages
with several electrodes placed on the chest and limbs. A common task in health care and
medical diagnosis is to monitor a patient’s heart activity and detect abnormal heartbeat
patterns, indicating cardiac arrhythmias or other heart-related problems. There are well-
maintained databases, e.g., the MIT-BIH database [52], where medical experts annotate a
large body of data with numerous types of anomalies. Automated anomaly detection in
such ECG data is still challenging because the deviations from nominal behavior are often
subtle and require long-range analysis. Furthermore, there are considerable signal variations
from patient to patient or even within an ECG time series (noise, baseline wandering, etc.).
A common issue is the heart rate variability (even for healthy hearts, there is a variation in
the time interval between consecutive heartbeats of several milliseconds), leading to quasi-
periodic signals and increasing the complexity of the analysis.

Long short-term memory (LSTM) networks [63], which are a particular form of recurrent
neural networks (RNN) and thus belong to the class of deep learning methods, have proven
to be particularly useful in learning sequences with long-range dependencies. They avoid
the vanishing gradient problem [62] and are more stable and better scalable [54] than other
RNN architectures. LSTMs have been successfully advanced the state-of-the-art in many
application areas like language modeling and translation, acoustic modeling of speech, anal-
ysis of audio data, handwriting recognition, and others [54]. We will use stacked LSTMs as
the building block for our ECG time series prediction.

71



6.1. INTRODUCTION

This chapter presents an unsupervised time series anomaly detection based on LSTM
networks that learn to predict the normal time series behavior. The prediction error on
several prediction horizons is used to build a statistical model of normal behavior. We
propose new methods (window-based error correction and outlier removal) essential for a
successful model-building process and a high signal-to-noise-ratio. We apply our method
to the well-known MIT-BIH ECG data set and present initial results. We obtain a good
recall of anomalies while having a very low false alarm rate (FPR) in a fully unsupervised
procedure. We also compare with other anomaly detectors (NuPIC, ADVec) from the state-
of-the-art.

In Section 6.2, we will describe an LSTM prediction model that is trained to predict
over multiple horizons and is applied to time series containing nominal and rare anomalous
data. We observe multidimensional error vectors (one vector for each point in time) and
estimate a mean and covariance matrix. Based on the Mahalanobis distance, we can assign a
probability of being anomalous at each point in time. Section 6.3 describes our experimental
setup and the MIT-BIH Arrhythmia Database used in our experiments. Section 6.4 presents
and discusses our results, while Section 6.5 concludes.

6.1.1 Related Work

Publicly, there are only relatively few benchmarks for ECG arrhythmia detection available:
The MIT-BIH Arrhythmia database [52, 112, 113], the CU Ventricular Tachyarrhythmia
Database [121], and the St. Petersburg INCART 12-lead Arrhythmia Database [52]. We
will use the MIT-BIH benchmark in this and the following chapter since it contains the
most patients (47 patients) and sufficiently long ECG recordings (30 minutes), and it is the
most commonly used benchmark in the literature.

Much work is devoted to anomaly detection in ECG readings: Several authors use multi-
resolution wavelet-based techniques [139, 162]. A novelty-search approach on ECG data is
taken in [90] in order to perform unsupervised anomaly classification. Sivaraks et al. [151]
use motif discovery for robust anomaly detection.

Many articles are concerned with the detection of arrhythmias in ECG signals. However,
work on unsupervised approaches appears to be less common in this field. The presented
approaches are mostly supervised algorithms that are trained to classify different arrhythmia
types. Luz et al. give a comprehensive overview of various classification approaches for
ECGs in [101]. In [56], Hannun et al. designed a 34-layer convolutional deep neural network
to classify 12 different heart arrhythmia types. However, due to its nature, the architecture
is supervised and requires annotated data for training. The authors use a massive labeled
dataset containing 91,232 single-lead ECGs from 53,549 patients (not publicly available).
The trained model achieves very high accuracy on a cardiologist level. Several researchers
base their approaches on the discrete wavelet transform (DWT) [171, 143, 168, 7]. Thomas
et al. [168] extract, next to other features (some of which might partially require expert
knowledge, such as the RR-intervals), dual-tree complex wavelet-based features from the
ECG signal and train a neural network for four arrhythmia classes. We found several
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works that introduce anomaly detection methods in ECG readings [107, 161, 28, 2, 22,
151].Sivaraks et al. [151] use motif discovery and propose an approach for robust anomaly
detection in ECG data.

The works of Malhotra et al. [107] and Chauhan & Vig [28] are the closest to our
current approach. They describe the general idea of LSTM-based prediction and their
application to ECG, motor sensor, or power-consumption time series. However, the big
drawback of [107, 28] is that they need a manual and supervised separation into up to
six data sets: training, validation, test sets which are further subdivided into nominal &
anomalous subsets. This means that for a real-world application, the ECG data for a new
person would need to undergo an expert anomaly classification prior to any training, which
would be highly impractical in most application scenarios. Instead, our method aims to use
the whole body of data for a person and train the LSTMs without the necessity to have
supervised anomaly information.

While Chauhan & Vig [28] only apply their method to one-minute recordings of the
ECG signals in the MIT-BIH [52, 112, 113] corpus, we test our approach on the full-length
signals (30 minutes each). Additionally, we only consider those 13 time-series signals with
less than 50 abnormal events (ECG-13 data, as described in section 2.3) for our initial tests.
In the following chapter 7, we extend the benchmark to 25 time series (ECG-25 benchmark,
< 250 events per time series). In [28], also ECG signals are used where the vast majority
of heartbeats are considered anomalous (e.g., signals with paced beats). These cases lead
to a trivial anomaly detection task since an algorithm can simply flag each heartbeat as
anomalous.

6.2 Methods

6.2.1 LSTM for Time Series Prediction

The learning task is formulated as a time series forecasting problem. Hence, we attempt to
train a model which can predict future values in the time series. This approach’s intuition
is that the usual quasi-periodic patterns in the ECG time series should be predictable with
only minor errors. At the same time, abnormal behavior should lead to significant deviations
in the predictions. Although the presented methodology is only applied to ECG data in
this chapter, it is sufficiently general to be applied to other (predictable) time series as well.

6.2.1.1 Data Preparation

Consider a d-dimensional time series of length T . In a first step, it is often recommendable
to scale or normalize the time series’s dimensions. In our setup, each ECG signal dimension
is scaled to the range [−1, 1]. The training and test samples are generated by extracting sub-
sequences of suitable length from the original time series. This is done by sliding a window
of length W with a lag of 1 over the time series and collecting the windowed data in a tensor
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Figure 6.1: LSTM Architecture. The LSTM model is trained with Xtrain and Ytrain. Xtest and
Ytest are used to verify if the model is overfitting. In order to detect anomalies, the algorithm passes the

whole time series X through the LSTM model and computes residuals for the predicted tensor Ŷ.

D ∈ RT ′×W×din , where T ′ is the number of sub-sequences. We select all d dimensions of the
time series so that din = d. Then, the first 80% of the samples of D are selected to form
the training data Xtrain. The remaining 20% are used as a test set Xtest to compute an
unbiased error estimate later. While the inputs are din-dimensional, the output-targets for
each time step have the dimension m, since one can select for one time series multiple (m)
prediction horizons. Technically, it is also possible to predict several time series dimensions
with dout ≤ d simultaneously in one model; however, in our experiments, the results do not
improve in this case (for the investigated ECG-13 time series data). The targets yt ∈ Rm

are future values of the selected signal at times t + hi for i ∈ {1, ...,m}, where the horizons
are specified in H = (h1, h2, . . . , hm). Since we follow a many-to-many time series prediction
approach, where the algorithm performs a prediction at each instance of time t, the tensor
containing the target signals has the shape RT ′×W×m with T ′ = T −W −max(H) + 1. As
before, the first 80% of the targets are used for training (Ytrain) and the remaining targets
for the test set (Ytest).

6.2.1.2 Model Architecture and Training

A stacked LSTM architecture [63] shown in Figure 6.1 with L = 2 layers is used to learn
the prediction task. Each layer consists of u = 64 units. A dense output layer with m units
and a linear activation generates the predictions for the specified prediction horizons in H.
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The net is trained with the sub-sequences of length W taken in mini-batches of size B from
the training inputs Xtrain and targets Ytrain. 10% of the training data is held out for the
validation set. The LSTM model is trained by using the Adam optimizer [82] to minimize
the mean-squared-error (MSE) loss. Other loss functions, such as log-cosh (logarithm of
the hyperbolic cosine) and MAE (mean absolute error), were tested as well and produced
similar results for our data. We could obtain similar results with the loss functions log-cosh
(logarithm of the hyperbolic cosine) and MAE (mean absolute error). Early stopping is
applied to prevent overfitting of the model and to reduce the overall time required for the
training process. For this purpose, the MSE on the validation set is tracked. For most of the
investigated time series, 10-20 epochs are sufficient to reach a minimum of the validation
error.

6.2.2 Modeling the Residuals

After the LSTM prediction model is trained, the whole time series X ∈ RT×din of length
T is passed through the model, and a tensor Ŷ of shape RT×m is predicted. Then, the
prediction errors E = Y − Ŷ are calculated, where Y contains the true target values for
the horizons in H. Now, each row i in the matrix E represents an error vector ei ∈ Rm.

We noticed in our initial experiments that it was not possible to find good Gaussian fits
for the individual dimensions of the prediction errors in E. An example for this is shown
in Figure 6.2, upper part. This was due to the fact that the tails of the error distributions
contained many outliers, which significantly distorted the estimated fit. Hence, we decided
to remove the outliers in each dimension’s tails (only during the Gaussian modeling phase).
We could find good solutions by discarding the upper and lower 3% quantile in each dimen-
sion. We observed that this approach usually removes slightly more than 20% of the data
records in our experiments. Note that the Mahalanobis distance itself does not require any
particular assumptions about the data distribution (such as normality). However, we found
that better results are obtained when removing the outliers in the distribution tails. Exper-
imentally, we also tried using the minimum covariance determinant estimator (MCD) [142]
(a robust estimator of mean and covariance matrix) but found that the results are similar
to the simple heuristic described above. Since MCD is computationally less efficient, we
decide to use our heuristic instead.

After removing the outliers from the prediction errors E, the covariance matrix Σ̄ and
mean vector ē are computed for the cleaned matrix E. Then, the squared Mahalanobis
distance

M(ei) = (ei − ē)TΣ̄
−1

(ei − ē) (6.1)

to the mean vector ē is determined for each error vector ei in E.
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Figure 6.2: Gaussian fit without and with the removal of outliers in the tails of the error distribution.
Exemplary, this is shown for one dimension of the overall error distribution. The blue curve shows the
empiric error distribution. The red curve depicts the estimated Gaussian. Although our anomaly score
metric, the Mahalanobis distance, does not require the assumption of Gaussian-distributed data, this plot
nevertheless demonstrates that there are likely many outliers in the error distribution tails which might
distort the estimations of mean and covariance matrix.

6.2.3 Anomaly Detection

For most data points in the time series, the corresponding Mahalanobis distance will be
comparably small since they are located close to the distribution’s mean. On the other side,
unusual patterns in the error vectors ei – such as large errors in one or more dimensions – will
result in large values in the Mahalanobis distance. Therefore, the Mahalanobis distance can
be used as an indicator for anomalous behavior in the time-series signal. In our LSTM-AD
algorithm, points with a Mahalanobis distance larger than a specified anomaly threshold
will be flagged as anomalous. Figure 6.3 shows exemplarily the Mahalanobis distance over
time for a selected ECG signal. Depending on the choice of threshold, more or fewer points
will be classified as anomalous. If the threshold is set too small, the algorithm will likely
produce many false detections. If the threshold is chosen too large, many anomalies might be
missed. Ideally, a threshold can be found which allows identifying all anomalies without any
false detections. However, in practice, one usually has to trade-off true and false detections
and select the threshold according to the own requirements.
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Figure 6.3: Mahalanobis distance over an ECG time series, before and after the window-based error
correction method is applied.

6.2.4 Window-Based Error Correction

Initially, we could not obtain very good results when running our algorithm on several
example ECG time series. The Mahalanobis distance signal was rather noisy and could not
be used to distinguish between nominal and abnormal patterns in the data. In Figure 6.3
(top) this problem is visualized for one example time series. Further investigation showed
that the LSTM network predictions were good in general but not sufficiently accurate near
the heartbeat peaks. The prediction had been slightly shifted (up to ten time steps) forwards
or backward compared to the actual signal. We could identify that the quasi-periodic
character of most ECG signals (small but ubiquitous frequency changes in the heartbeat,
often referred to as heart rate variability) is the primary source of this problem. The
following solution for this problem is proposed: In order to address the variability in the
frequency of the signal, small corrections in the predictions of the individual horizons will be
permitted. For each output dimension k ∈ {1, . . . ,m} the target values yt,k are compared

to the neighbored predictions ŷ ∈ Ŷ
(win)
t,k and the prediction with the smallest absolute error

is effectively taken:

ŷt,k ← arg min
ŷ∈Ŷ (win)

t,k

|yt,k − ŷ| (6.2)

Ŷ
(win)
t,k = [ŷt−ck,k, . . . , ŷt,k, . . . , ŷt+ck,k] (6.3)

We found that reasonable results can be achieved with window parameters ck up to a length
of 10, depending on the prediction horizon hk:

ck = min(hk, 10). (6.4)
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6.3. EXPERIMENTAL SETUP

The window-based error correction is applied right after the LSTM prediction of Ŷ and
before the prediction errors E are computed in subsection 6.2.2.

Although this approach corrects the predictions of the LSTM network explicitly with the
actual target values Y of the time series, it is not supervised in the sense that no anomaly
labels are presented to the algorithm at any time of the training and correction process.
As will be shown in Sec. 6.4, we could significantly improve the performance of LSTM-AD
utilizing this correction step.

6.3 Experimental Setup

6.3.1 The ECG-13 Benchmark

In this chapter, we use the ECG-13 dataset, as described in more detail in Section 2.3for
our initial experiments. This dataset contains 13 time series taken from the MIT-BIH
database [52], each with 650 000 2-dimensional points (which corresponds to roughly 30
minutes). The selection criterion for the 13 time series (patients) and the abnormal classes
was such that each time series has 50 or fewer abnormal heartbeats of that class. In total,
the ECG-13 dataset contains 130 anomalies from six anomaly classes. Apart from the
normalization of the data, no further preprocessing is performed. In the following chapter 7,
we extend the benchmark and use all MIT-BIH ECG time series with less than 250 events,
resulting in a set of 25 time series (called the ECG-25 dataset).

6.3.2 Parameterization of the Algorithms

All algorithms compared in this work require a set of parameters, which are – if not men-
tioned otherwise – fixed for all experiments. For each algorithm, an anomaly threshold can
be set, which specifies the algorithm’s sensitivity towards anomalies and trades off false
detections (false positives) and missed anomalies (false negatives). This threshold is usu-
ally set according to the anomaly detection task’s requirements – allowing either a higher
precision or a higher recall.

LSTM-AD We implemented our proposed algorithm using the Keras framework [30]
with a TensorFlow [1] backend. For our LSTM-AD algorithm, both the MLII and V5 signal
will be used as inputs of the model, and only the MLII signal is predicted for the specified
horizons. The parameters of the algorithm are summarized in Table 6.1. Most of the
parameters are related to the stacked LSTM network. The parameters were selected after
a few informal pre-experiments, but we did not systematically tune the parameters.

ADVec There are mainly three parameters (described in Section 3.1.1) which have to
be provided for Twitter’s ADVec algorithm: The first parameter α represents the level of
statistical significance with which to accept or reject anomalies. This parameter is used
as anomaly threshold. The second parameter maxanoms specifies the maximum number of
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Table 6.1: Summary of the the parameters used for the LSTM anomaly detector.

Parameter value Parameter value
H (1, 3, . . . , 47, 49) L MSE
L 3 u (64, 64)
B 2048 W 80

optimizer ADAM αinit 0.001
din 2 dout 1 (MLII)
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Figure 6.4: Training vs. test errors (MSE) for the individual time series. The median of all such training
and test errors is 2.91 · 10−3 and 3.43 · 10−3, respectively. The black line depicts the identity line.

anomalies that the algorithm will detect as a percentage of the data. Although we did not
tune the parameter extensively, we found the maxanoms = 0.05 to deliver the best results.

NuPIC Numenta’s anomaly detection algorithm [49] has a large set of parameters which
have to be set. As in other experiments, we decided to use the standard parameter settings
recommended in [89]. NuPIC outputs an anomaly likelihood for each time series point in
the interval [0,1], which is suitably thresholded to control the sensitivity of the algorithm.

6.4 Results & Analysis

Firstly, we confirm with Fig. 6.4 that our LSTM models do not overfit since the training and
test set errors are for all time series nearly the same. We note in passing that the time series
with a somewhat larger test set error (No. 10, 15, and 20) have – as visual inspection shows
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6.4. RESULTS & ANALYSIS

– a test set that varies from the bulk of the training data due to larger non-stationarities in
the data set.

As seen in Table 6.2, the Mahalanobis distance is generally a good indicator for sepa-
rating nominal from anomalous behavior in the heartbeat signals if a suitable threshold is
known. For all time series, a recall value of 0.5 or larger can be observed, and with one
exception, the F1-score exceeds the value 0.5. On average, a F1-score of approximately 0.81
can be achieved for all time series. Note that all FPRs are smaller than 3 · 10−5.

Table 6.2: Results for the ECG-13 dataset (all ECG time series with less than 50 anomalies; in total 13
time series). For these results, the anomaly threshold is chosen for each time series individually so that the
F1-score is maximized. The row Σ represents the metrics for the sum of TP, FN and FP over all 13 time
series.

No. threshold TP FN FP Prec Rec F1 FPR PLR
∗105 /105

1 49.31 17 17 14 0.55 0.50 0.52 2.15 0.23
2 71.31 6 0 4 0.60 1.00 0.75 0.62 1.62
4 11.25 1 1 0 1.00 0.50 0.67 0.00 Inf
9 27.12 15 13 3 0.83 0.54 0.65 0.46 1.16

10 14.96 33 7 6 0.85 0.82 0.84 0.92 0.89
11 60.75 1 0 0 1.00 1.00 1.00 0.00 Inf
12 59.18 2 0 0 1.00 1.00 1.00 0.00 Inf
13 116.93 6 0 0 1.00 1.00 1.00 0.00 Inf
15 99.74 5 0 5 0.50 1.00 0.67 0.77 1.30
17 40.02 1 0 0 1.00 1.00 1.00 0.00 Inf
20 75.40 1 0 0 1.00 1.00 1.00 0.00 Inf
21 30.30 1 0 0 1.00 1.00 1.00 0.00 Inf
22 121.42 3 0 7 0.30 1.00 0.46 1.08 0.93

mean – 7 2 3 0.82 0.87 0.81 0.46 Inf
Σ – 92 38 39 0.70 0.71 0.70 0.46 1.53

Since the anomaly threshold is used for trading off false-positive and false-negatives
(precision and recall), one can vary the threshold in a specific range and collect the results
for different values. This is done in Figure 6.5, which also shows the results for different
thresholds for ADVec and NuPIC. It has to be noted that ADVec accounts only for fixed-
length seasonalities, it is not built for quasi-periodic signals as they occur in ECG readings,
so it is quite understandable that it has only low performance here.

In Figure 6.6, two excerpts of time series No. 13 (left) and No. 10 (right) with the
detections of our LSTM-AD algorithm, NuPIC and ADVec are exemplarily shown. In both
examples, it can be seen that LSTM-AD detects all indicated anomalies, while NuPIC
and ADvec only detect two and one anomalies, respectively. Additionally, the other two
algorithms produce several false positives.

The importance of our proposed window-based error correction method (Sec. 6.2.4) is
illustrated in Figure 6.3 for ECG signal No. 13: If no window-based error correction is
applied, the obtained Mahalanobis distance cannot be suitably used to distinguish between
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Figure 6.6: Subsets of two example time series taken from the MIT-ECG data with the anomalies detected
by the algorithms LSTM-AD, NuPIC, and ADVec. The red rectangles in the plot indicate the true anomaly
windows. Green colors indicate True-positives while False-positives are colored red.

81



6.4. RESULTS & ANALYSIS

Table 6.3: Comparison of the results on the ECG-13 data, with and without the window-based error
correction, as described in subsection 6.2.4. The last column F1(Corr) is copied from Table 6.2. The
remaining columns depict the quantities obtained if no window-based error correction is applied (thresholds
chosen such that F1 is maximized).

ECG No. threshold TP FN FP Prec Rec F1 F1(Corr)
1 20.60 12 22 23 0.34 0.35 0.35 0.52
2 5.83 2 4 2 0.50 0.33 0.40 0.75
4 7.03 1 1 0 1.00 0.50 0.67 0.67
9 16.83 13 15 10 0.57 0.46 0.51 0.65

10 16.21 28 12 2 0.93 0.70 0.80 0.84
11 40.60 1 0 0 1.00 1.00 1.00 1.00
12 28.48 1 1 1 0.50 0.50 0.50 1.00
13 93.83 5 1 130 0.04 0.83 0.07 1.00
15 87.97 2 3 5 0.29 0.40 0.33 0.67
17 35.90 1 0 38 0.03 1.00 0.05 1.00
20 25.10 1 0 1 0.50 1.00 0.67 1.00
21 32.31 1 0 0 1.00 1.00 1.00 1.00
22 77.33 2 1 37 0.05 0.67 0.10 0.46

mean – 5 4 19 0.52 0.67 0.50 0.81
Σ – 70 60 249 0.22 0.54 0.31 0.70

nominal and anomalous patterns in the displayed ECG data. Only after applying our ap-
proach, a better signal-to-noise ratio is established, which perfectly separates the anomalies
from the nominal points. For most of the investigated ECG readings, we found that the
window-based error correction significantly improves the signal-to-noise ratio in the Maha-
lanobis distance. Table 6.3 shows: The average F1-score increases from F1=0.50 when no
window-based error correction is applied to F1=0.81.

In Table 6.4, various measures are listed for the individual anomaly classes. The anomaly
types a, F, and x, can all be detected by LSTM-AD. Also, for the anomaly class V, a high
recall can be achieved. However, the two remaining types appear to be hard to detect for
our algorithm.

Table 6.4: Various metrics for 5 different anomaly classes. The threshold was tuned individually for each
time series by maximizing the F1-score.

TP FN Prec Rec F1 FPR ∗105 PLR /105

A 23 21 0.65 0.52 0.58 0.14 3.64
V 44 9 0.73 0.83 0.78 0.19 4.36
| 9 8 0.63 0.53 0.58 0.06 8.49
a 6 0 0.79 1.00 0.88 0.02 53.44
F 2 0 0.65 1.00 0.79 0.01 80.16
x 8 0 0.73 1.00 0.85 0.03 29.15
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Table 6.5: Same as Table 6.2. However, now the stacked LSTM is trained only with nominal sequences.
Hence, training sequences containing anomalies are removed. The results slightly better in the F1-score in
comparison to Table 6.2.

ECG No. threshold TP FN FP Prec Rec F1 FPR TPR/FPR
1 60.60 18 16 2 0.90 0.53 0.67 0.31 1.72
2 87.84 5 1 2 0.71 0.83 0.77 0.31 2.71
4 8.78 1 1 0 1.00 0.50 0.67 0.00 Inf
9 30.52 14 14 0 1.00 0.50 0.67 0.00 Inf

10 18.80 32 8 5 0.86 0.80 0.83 0.77 1.04
11 68.91 1 0 0 1.00 1.00 1.00 0.00 Inf
12 60.03 2 0 0 1.00 1.00 1.00 0.00 Inf
13 92.32 6 0 1 0.86 1.00 0.92 0.15 6.50
17 84.21 1 0 0 1.00 1.00 1.00 0.00 Inf
21 28.57 1 0 0 1.00 1.00 1.00 0.00 Inf
22 123.27 3 0 5 0.38 1.00 0.55 0.77 1.30
15 130.13 4 1 2 0.67 0.80 0.73 0.31 2.60
20 50.11 1 0 0 1.00 1.00 1.00 0.00 Inf

mean – 6 3 1 0.88 0.84 0.83 0.20 Inf
Σ – 89 41 17 0.84 0.68 0.75 0.20 3.40

Our method is unsupervised in the sense that no anomaly class labels are needed for
training the algorithm. In fact, it is even not necessary that anomalous events are present
at all in the training data, i.e., our algorithm can operate as a one-class classifier. We
checked this by repeating the experiment leading to Table 6.2, but this time removing all
data around anomalies during LSTM training. When using the trained model as an anomaly
detector on all data, it worked as accurately as in Table 6.2, the mean F1-score being now
F1 = 0.83. The results for this experiment are listed in Table 6.5.

6.5 Conclusion & Possible Future Work

We have presented a fully unsupervised method to detect anomalies in ECG readings. This
method relies on an accurate LSTM predictor to learn the nominal behavior of the ECG
for several prediction horizons. For the prediction errors, a mean vector and covariance
matrix is estimated. Anomalous events have a high probability of being detected through
an unusually high Mahalanobis distance.

We achieve for the ECG readings these high precision, recall, and F1-values (on average
higher than 80%, see Table 6.2), if we tune the final threshold for the Mahalanobis distance
such that F1 is maximized. Admittedly, this last step is not unsupervised since we calculate
the confusion matrix based on the true anomaly labels.

We have shown that the window-based error correction is essential to achieve a Maha-
lanobis distance graph where the anomaly cases clearly stand out (Fig. 6.3 and Table 6.3).
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6.5. CONCLUSION & POSSIBLE FUTURE WORK

Our LSTM-AD algorithm outperformed two state-of-the-art anomaly detection algo-
rithms (NuPIC and ADVec) on the investigated ECG readings, achieving higher precision
and recall over a large range of anomaly thresholds.

We have presented initial results of an unsupervised anomaly detector suitable for ECG
readings or other quasi-periodic signals in this work. The results are encouraging, but there
is still room for improvement. Possible future works include:

� Addressing the problem of concept-drifts in the ECG readings, e. g. by applying
suitable preprocessing steps to reduce the effect of signal quality changes.

� Enrich the model by multi-resolution approaches to span larger prediction horizons on
a coarser scale.

� Finding better hyper-parameters for the LSTM model in an automized fashion.

In the next chapter, we will introduce a temporal convolutional network autoencoder
(TCN-AE), an architecture based on dilated convolutional layers, and compare TCN-AE to
the LSTM-AD algorithm of this chapter on the Mackey-Glass Anomaly Benchmark (MGAB)
and the extended ECG-25 benchmark.
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Chapter 7

The Temporal Convolutional
Autoencoder TCN-AE

7.1 Introduction

In this chapter, we present TCN-AE, a temporal convolutional network autoencoder based
on dilated convolutions. Similar to the other anomaly detection algorithms discussed in this
thesis, TCN-AE trains completely unsupervised. In contrast to SORAD and LSTM-AD,
TCN-AE is a reconstruction-based algorithm instead of a prediction-based one.

In the first part of the chapter, we describe a relatively simple baseline version of the
algorithm (baseline TCN-AE) and demonstrate its capabilities by comparing it to other
state-of-the-art algorithms on a Mackey-Glass (MG) anomaly benchmark (MGAB). Fur-
thermore, we will see that our autoencoder is capable of learning interesting representations
in latent space.

In the second part of this chapter, we analyze the architecture of the baseline TCN-AE,
and we propose several enhancements that lead to TCN-AE in its current form. The final
algorithm shows its efficacy on the real-world MIT-BIH [52, 112, 113] data of patients with
cardiac arrhythmia, which we previously used in Chapter 6. Contrary to Chapter 6, we
now consider the data of 25 patients (ECG-25) instead of 13 (ECG-13), almost doubling
the amount of the benchmark data. TCN-AE also significantly outperforms several other
unsupervised state-of-the-art anomaly detection algorithms on this comprehensive anomaly
benchmark. Moreover, we investigate the contribution of the individual enhancements and
show that each new ingredient improves the overall performance on the investigated bench-
mark.

As we have already seen in the previous chapter, it is rather challenging to learn the
underlying structure of a system’s normal behavior, especially if one has to deal with pe-
riodic or quasi-periodic signals with complex temporal patterns. In such environments,
anomalies may be hard-to-detect deviations from the regular recurring pattern. Especially,
for prediction-based algorithms it is challenging to predict small, but random variations
in frequency/periodicity in quasi-periodic time series. ECG signals are a good example
for such time series. Due to the heart rate variability (HRV), which is the variance in
time between two heartbeats, it is rather difficult for a prediction-based algorithm to accu-
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rately predict the exact position (in time) of, for example, the next R-peak (typically, the
most characteristic peak in the signal). Even small shifts in predicted and actual R-peak
cause large prediction errors which might falsely be interpreted as anomalous. To account
for this variability in ECG signals, we introduced the window-based error correction for
LSTM-AD in the previous chapter. Another way to approach this problem could be to use
reconstruction-based (using an encoder and decoder architecture) anomaly detection algo-
rithms instead of prediction-based ones. The advantage of reconstruction-based algorithms
is that they do not require a time series to be predictable (in the sense of forecastable).
Instead, they have a bottleneck which forces them to learn the underlying patterns of (nom-
inal) time series. Most approaches found in the literature (see Chapter 3) are based on
(temporal) autoencoders which take short sub-sequences from a time series, encode them
into a latent-space vector, and attempt to reconstruct the sub-sequence based on the latent
vector. However, these kind of reconstruction-based algorithms have the disadvantage that
they are commonly limited to detecting anomalies in relatively short sub-sequences.

In this chapter, we propose a novel autoencoder architecture for sequences (time series),
called TCN-AE, which is inspired by temporal convolutional networks [13] and shows its
efficacy in unsupervised learning tasks. Contrary to other approaches, it does not encode
and reconstruct short sub-sequences. Instead, it can compress a whole time series into a
significantly shorter one, before reconstructing the original time series again. TCN-AE uses
so-called dilated convolutional layers to naturally create a large receptive field and process a
time series signal at different time scales. It consists of two parts, an encoder, and a decoder,
which are both trained simultaneously and learn to find a compressed representation of the
input time series (encoder) and reconstruct the original input again (decoder). Initially, we
study a baseline version of TCN-AE. Our experiments show that the baseline architecture
can learn interesting representations of sequences in latent space. When trained on (mostly)
normal data, the approach can also be used for anomaly detection tasks by using recon-
struction errors to predict anomaly scores. Only a small fraction of labeled data is needed
to find a suitable threshold for the anomaly score. This can also be fine-tuned in operation
with an already trained model.

For the initial benchmarking and comparison of our baseline algorithm, we use a syn-
thetic benchmark based on Mackey-Glass (MG) time series [106]. In its current form, the
Mackey-Glass Anomaly Benchmark (MGAB) consists of 10 MG time series in which anoma-
lies were inserted using a clearly defined procedure. Although the anomalies are inserted
synthetically, spotting them is rather difficult for the human eye. Due to the structured in-
sertion process and the clear labeling of nominal and anomalous data, no domain knowledge
is required to label the data correctly.

In the second part of the chapter we propose several enhancements for the baseline
TCN-AE architecture. Then, we test our model on the more challenging ECG-25 dataset
(introduced in Section 2.3.3), an anomaly benchmark consisting of 25 electrocardiogram
time series with a length of half an hour.

We formulate the following research questions for this chapter:

86



� Can unsupervised deep learning models learn to detect anomalies?
� Which models are best to process the complex and long-range temporal patterns ob-

served in periodic or quasiperiodic time series data?

The key findings of the research described in this chapter can be formulated as follows:

� Under certain (mild) assumptions, it is possible to train unsupervised Deep Learning
(DL) models for anomaly detection. The novel autoencoder approach is essential for
achieving this.

� It is essential to process the data on different time scales (like TCN and wavelets) and
utilize the information from different time scales in the anomaly detection process.

� TCN-AE outperforms all other considered state-of-the-art algorithms by more than
10% on the ECG-25 benchmark (Table 7.6).

Several earlier works inspired the TCN-AE architecture that is presented in this
chapter: While Holschneider et al. applied dilated convolutions in their ”algorithme à
trous” algorithm in the field of wavelet decomposition already in 1990 [65], more recently,
they have also been applied to deep learning architectures, where the parallels to the
non-decimating/stationary discrete wavelet transform (DWT) are still apparent: van der
Oord et al. [124] introduced the WaveNet architecture, which uses dilated convolutions for
the generation of raw audio. Yu & Koltun [182] successfully employed dilated convolutions
to the task of semantic image segmentation. Later, Bai et al. [13] proposed a more general
temporal architecture for sequence modeling, which they named temporal convolutional
network (TCN). Our work is built upon the work of Bai et al. To the best of our knowledge,
there is no earlier work that employs TCNs in an autoencoder-like architecture. We only
found one approach for time series anomaly detection that is based on TCNs [61]. However,
it does not use autoencoders. Its general idea is more similar to [107] and [161], which use
forecasting errors as an indication for anomalous behavior. Further related work concerened
with electrocardiography and anomaly detection in ECG signals is described in the previous
Chapter 6.

The rest of this Chapter is organized as follows: Section 7.2 introduces the dilated
convolution operation while Section 7.3 presents the baseline TCN-AE architecture and
describes several experiments with Mackey-Glass time series. Section 7.4 proposes several
enhancements for TCN-AE and discusses the results for extensive experiments on the ECG-
25 dataset. Finally, we conclude this work in Section 7.5.

7.2 Methods

In the following, we introduce the Temporal Convolutional Network Autoencoder (TCN-
AE), describe its main components, and discuss a few of its properties and application areas
for time series analysis. We will start with a baseline architecture and then later successively
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add several enhancements to this architecture. As the name suggests, TCN-AE is a convolu-
tional neural network architecture. Convolutional neural networks (CNNs) are broadly and
with great success used in computer vision applications, where other fully connected/dense
architectures commonly suffer from the curse of dimensionality. Convolutional nets have
several useful properties such as translation invariance, weight (parameter) sharing, and
computational efficiency, making them especially beneficial for computer vision tasks such
as image recognition, segmentation, or object detection. Their properties are also helpful
for time series processing, where typically 1D-convolutions are employed. Several architec-
tures, such as WaveNet [124], or temporal convolutional networks [13] take advantage of the
convolutional approaches developed for computer vision and adopt some ideas into the time
domain.

7.2.1 Intuition

TCN-AE is designed to learn how to encode or compress a sequence into a significantly
shorter sequence (using an encoder network) and subsequently reconstruct the original se-
quence from the compressed representation (using a decoder network).

The central idea is to create a bottleneck in the architecture that forces the network to
identify and capture the most useful (temporal) patterns in the raw input data and translate
them into efficient encodings. The encoded data should contain all the essential information,
allowing an accurate reconstruction of the original input. Ideally, the autoencoder learns to
ignore signal noise, redundancies, and other irrelevant information.

Conceptually, TCN-AE is similar to other classical (deep) autoencoder architectures.
The most common autoencoder architectures encode fixed-sized inputs into a latent space
representation and then use the latent variables to reconstruct the original input. Similarly,
the TCN-AE encodes sequences along the temporal axis into representation and then at-
tempts to reconstruct the original sequence. However, it differs from regular autoencoders
in so far in that it replaces the fully connected/dense layers with dilated 1D-convolutional
layers. Thus, the network can consider temporal relationships in the data more naturally
and flexibly regarding variable-size inputs. Furthermore, the temporal receptive field of
TCN-AE can be easily scaled and grows exponentially with an only linear increase in the
number of weights, which is especially important for time series containing long intricate
temporal patterns. Another advantage over other autoencoders is that TCN-AE (due to
the shared weights) potentially has fewer weights than dense AE architectures.

This idea can be used for several applications. The applications of (temporal) autoen-
coders are very diverse. In this work, we will focus on anomaly detection in time series.
Other applications could be time series (sequence) compression or representation learn-
ing [166], as we will investigate in Section 7.3.2.2.
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7.2.2 Dilated Convolutions

Convolutional layers in neural networks comprise digital filters, which remove or amplify
individual components (frequencies) in a presented signal (for example, an image or a time
series). Formally, the filtering process can be described by the convolution operation. For
a one-dimensional signal x[n] (x[n] being the n-th element in the signal), x : T → R,
where T = {0, 1, . . . , T − 1}, the convolution with a (finite impulse response) filter h[n],
h : {0, 1, . . . , k − 1} → R is usually defined as:

y[n] = (x ∗ h)[n] =
k−1∑
i=0

h[i] · x[n− i], (7.1)

where y[n] ∈ R is the output of the filter, h[i] ∈ R is the i-th filter weight and k specifies
the length of the filter. The convolution operation can be thought of as sliding a window of
length k, which contains the filter weights h[i], over the input sequence x[n] and computing
a weighted average of x[n] with the weights h[i] in each time step. The resulting output
signal is one-dimensional and of length T − k + 1. In order to obtain an output signal
of the same length, the input sequence is usually padded with zeros before applying the
filter. Since the filter is only slid along the time axis, the operation is usually referred to as
one-dimensional convolution. The behavior of the filter is determined by h[n] (e.g., low-pass
or high-pass characteristics), and the central idea of convolutional neural networks is not to
pre-determine h[n] but rather to learn suitable filter weights based on the learning task.

Convolutional layers in neural networks usually deal with multivariate input signals x[n]
of dimension d, with x : T→ Rd. In this case, each dimension xj[n] is convolved separately
with its own sub-filter hj[n], h : {0, 1, . . . , k−1} → Rd, and y[n] (remaining one-dimensional)
is a dot product:

y[n] = (x ∗ h)[n] =
k−1∑
i=0

h[i]⊺ · x[n− i]. (7.2)

In contrast to the regular convolution operation (as specified above), the dilated convo-
lution [182] has an additional parameter, the so called dilation rate q ∈ N. It defines how
many elements in the input signal x[n] are skipped between filter tap h[i] and filter tap
h[i + 1]. The dilated convolution is written as:

y[n] = (x ∗q h)[n] =
k−1∑
i=0

h[i]⊺ · x[n− q · i]. (7.3)

For q = 1 the original convolution operation is obtained.
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In many applications also acausal convolutions are used. In this case, future values of a
sequence x[n] will be processed to generate output y[n]:

y[n] = (x ∗q h)[n] =
k−1∑
i=0

h[i]⊺ · x
[
n− q · ⌊i− k/2⌋

]
(7.4)

In this work, we experimented with causal and acausal convolutions for TCN-AE and
found acausal convolutions to produce slightly better results for the investigated anomaly
detection tasks (MGAB & ECG-25). Note that this comes at the cost of slight delays in
online settings.

When using dilated convolutions, one has to consider that a few properties of the fre-
quency response of the system also change: the system function of a regular convolution
(q = 1) for a one-dimensional input signal is given as

H(z) =
k−1∑
m=0

h[m] · z−m.

If we evaluate the system function H(z) on the unit circle described by z = ejω̂, we get
the frequency response of the system. The parameter ω̂ = ω

fs
is the so-called normalized

radian frequency, which is obtained by dividing the radian frequency ω by the sampling
frequency fs. In this case, the Nyquist frequency is π. For the dilated convolution, the
system function becomes:

H(zq) =
k−1∑
m=0

h[m] · z−q·m. (7.5)

This means that a dilation rate q > 1 implicitly increases the filter order and adds extra
poles and zeroes to the system. For example, if q = 2, then the filter order is doubled from
M = k − 1 to M = 2(k − 1) and at the same time 2(k − 1) zeroes/poles are added to the
system. For q = 4, the filter order is multiplied by a factor of 4 and so on. Effectively, the
frequency response becomes ”sharper” for larger q and the filter is more sensitive to small
changes in the frequency. In fact, the frequency response of the filter has a periodicity of
2π
q

. This can be easily verified if we insert z = ej(ω̂+
2π
q
) into Eq. (7.5):

H(zq)
∣∣∣
z=ej(ω̂+2π

q )
=

k−1∑
m=0

h[m] ·
(

ej(ω̂+
2π
q
)
)−q·m

=
k−1∑
m=0

h[m] · e−jω̂qme−j(2π)m
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=
k−1∑
m=0

h[m] · e−jω̂qm

= H(zq)
∣∣∣
z=ejω̂

Figure 7.1 illustrates the discussed properties of dilated convolutions for several filters that
TCN-AE (described below) learned during its training. One can clearly see how the fre-
quency response evolves for increasing q. Note that the periodicity of the frequency re-
sponses, as shown in Figure 7.1, are solely defined by the dilation rate q. For example, this
means that for q = 8 we will – independently from the filter length and the filter weights –
always have a periodicity of π

4
for the frequency response, resulting in a ”rougher” landscape

than for q = 1. This realization was one of the reasons for introducing skip connections in
the architecture in order to reuse the outputs of different dilated convolutional layers (as
discussed in more detail in Section 7.4.1.1).
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Figure 7.1: Illustration of the frequency responses of several filters taken from the first four dilated
convolutional layers of TCN-AE (which is described in more detail below). Several properties, mentioned in
Section 7.2.2, can be observed: For example, with increasing dilation rate q, the amplitude of the frequency
response becomes ”sharper” and the filter is more sensitive to small changes in the frequency of the input
signal. This is because dilation rates larger than q > 1 implicitly increase the order of the filter, and
additional zeros/poles are introduced in the complex frequency-domain representation of the filter. Also,
the phase (angle) of the displayed filters is as expected not linear since the symmetry of the filter weights
is generally not given in a dilated convolutional layer.
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7.2.3 Dilated Convolutional Layers in Neural Networks

The previous section described how a one-dimensional output signal y[n] is computed using
a filter. In practice, a convolutional layer is typically comprised of many discrete filters, and
the individual outputs y[n] are stacked into a so-called feature map. If a signal x[n] of length
Ttrain is passed through a convolutional layer with nfilters filters, the resulting feature map
has the dimension Ttrain × nfilters (for a padded signal). The weights h[i] of each filter are
considered learnable parameters, commonly trained using variants of the back-propagation
algorithm.

Many neural network architectures for sequence modeling (e.g., [13, 124]) utilize dilated
convolutions to create a hierarchical temporal model with a large receptive field, capable of
learning long-term temporal patterns in the input data. The main idea is to build a stack
of dilated convolutional layers, where the dilation rate increases with each added layer. A
common choice is to start with a dilation rate of q = 1 for the first layer of the network and
double q with every new layer. With this approach, we can increase the receptive field of
the model exponentially. In general, the receptive field r for the causal and acausal case is
given by:

rcausal = k · 2L−1, (7.6)

racausal = ⌊k/2⌋ · (2L+1 − 2) + 1, (7.7)

where L > 0 is the number of layers. If, for example, we build a stack of L = 5 dilated
convolutional layers with a kernel size of k = 3, the receptive field’s size will be 3 · 24 = 48
for the causal case and 26 − 1 = 63 for the acausal setting. The size of the receptive field
should be considered when choosing the length of the training sequences. For example, the
receptive field should not be larger than the length of the training sequences.

In summary, a convolutional layer can be mainly described by three parameters: The
dilation rate q, the number of filters nfilters, and the kernel size (filter length) k. A convo-
lutional layer maps an input sequence x : T → Rd to an output sequence y : T → Rnfilters .
Note, that the shape of the output does not depend on k.

Relation between Dilated Convolutions and the DWT The non-decimating dis-
crete wavelet transform (DWT) is, in some sense, related to dilated convolutional neural
network architectures. The regular DWT decomposes a time series into so-called approxi-
mation and detail coefficients. By repeated filtering of the input with low-pass and high-pass
filters, one obtains a hierarchical representation of the original signal on different frequency
scales.

While the regular DWT downsamples (decimates) the signal after every low-pass filter
by a factor of two, the non-decimating DWT removes all downsampling units. In turn, the
filters have to be dilated. The dilation rate (which is a power of two) specifies the gaps
between the filter taps. The non-decimating DWT is usually used in applications where one
wants to achieve translation invariance (at the cost of redundancy). Holschneider et al. [65]
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proposed an efficient algorithm for computing the non-decimating DWT using dilated con-
volutions. Current deep learning architectures [124, 182, 13] based on dilated convolutional
layers are inspired by the earlier work of Holschneider et al. Dilated convolutional nets also
repeatedly filter a signal (e.g., time series or image) in a stack of convolutional layers. The
dilation rate q is usually doubled with every further layer.

There are also apparent differences: (a) The DWT filter weights depend on the mother-
wavelet choice and are fixed, while the weights of convolutional layers are learnable para-
meters. (b) The DWT does not use non-linear activation functions such as rectified linear
units (ReLU).

The baseline TCN-AE consists of two temporal convolutional neural networks
(TCNs) [13], one for encoding and one for decoding. Additionally, a downsampling
and upsampling layer are used in the encoder and decoder, respectively. The individual
components will be described in more detail in the following.

7.2.4 Temporal Convolutional Networks

The temporal convolutional network (TCN) [13] is inspired by several convolutional archi-
tectures [36, 48, 73, 124], but differs from these approaches insofar as it combines simplicity,
auto-regressive prediction, residual blocks, and very long memory. Essentially, a TCN is a
stack of n residual blocks. Each block consists of two serial sub-blocks, and each sub-block
is comprised of the following layers: a dilated convolutional layer, followed by a weight nor-
malization layer [145], a ReLu activation function [116], and a spatial dropout layer [152].
Furthermore, a skip (residual) connection [60] bypasses the residual block and is added to
the residual block’s output. A TCN is mainly described by three parameters: a list of dila-
tion rates (q1, q2, . . . , qL), the number of filters nfilters, and the kernel size k. The output of
each residual block and the final output is a sequence y : T→ Rnfilters . A full description of
TCN would be out of scope for this chapter. The reader is referred to [13] for the details.

7.2.5 Unsupervised Anomaly Detection with TCN-AE

A natural application of TCN-AE is the anomaly detection in time series. Although we
have not yet discussed the architecture of TCN-AE in detail, we can already describe how
its reconstruction errors are used to detect anomalous patterns. Due to the bottleneck in
the architecture, the training procedure forces TCN-AE to learn compressed encodings of
the input sequences, which capture the underlying structure of the data and allow accurate
reconstruction. Intuitively, we expect that TCN-AE reconstructs recurring nominal patterns
in a time series with only small errors. It focuses on minimizing the reconstruction error
of the nominal data that are in the vast majority during training. On the other hand,
when TCN-AE observes patterns that significantly differ from the norm, we expect higher
reconstruction errors.

To discover abnormal behavior, we slide a window of length ℓ over the reconstruction
error and collect the ℓ-dimensional vectors in an error matrix E. The purpose of the sliding
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window is to smoothen noisy events that might occasionally appear. The error matrix
E is passed to the outlier detection algorithm, which identifies unusual points in the ℓ-
dimensional space. The outlier detection algorithm outputs an anomaly score, which is
later thresholded. We experimented with different outlier detection algorithms and found
that a simple approach based on the Mahalanobis distance (line 15 in Algorithm 8) delivers
the best results. An advantage of the Mahalanobis distance is that it is parameter-free and
does not require any particular assumptions about the data distribution (such as normality).
The Mahalanobis distance only requires the invertibility of the covariance matrix. However,
in practice, there are rarely situations where the covariance matrix is non-invertible. We
summarize the anomaly detection algorithm for TCN-AE in Algorithm 8.

Note that although we train TCN-AE with the complete time series, the overall anomaly
detection algorithm consisting of TCN-AE and Mahalanobis distance calculation is entirely
unsupervised. The training procedure does not pass anomaly labels to the algorithm at any
time. Only for selecting an appropriate anomaly threshold on the Mahalanobis distance, we
permit all algorithms to use 10% of the anomaly labels, as described later in Sec. 7.4.2.2.

7.3 A Baseline Version of TCN-AE

7.3.1 The Baseline TCN-AE Architecture

For our initial experiments, we use TCN as a building block for a baseline temporal au-
toencoder, referred to as baseline TCN-AE. In later sections, we will modify the baseline
TCN-AE, add further enhancements to the architecture, and analyze their contribution to
the final TCN-AE architecture. The baseline TCN-AE consists of an encoder network enc(·)
and a decoder network dec(·).

The encoder enc(·), shown in Fig. 7.2, left, attempts to generate a compact representation
that captures the main characteristics of the input sequences and allows a reasonably good
reconstruction in later steps. In order to learn the important features in a sequence, it is
necessary to identify short-term as well as long-term patterns. The encoder takes an input
sequence, passes it through a TCN network, reduces the dimension of the feature map by
applying a 1× 1 convolutional layer1 [96, 156] and finally down-samples the series along the
time axis by a specified factor using an average-pooling layer. It does so by averaging groups
of size s along the time axis. The number of filters c in the 1× 1 convolution layer specifies
the dimension of the encoded representation and the sample rate s determines the factor, by
which the length T of the series is reduced. Hence, the original input x[n] will be compressed
into an encoded representation H[n] = enc(x[n]), where H : {0, 1, . . . , T/s− 1} → Rc.

The decoder dec(·), shown in Fig. 7.2, right, attempts to reconstruct the original input
sequence, using the output of the encoder as input. First, the length of the original series
has to be restored. We use a simple sample-and-hold interpolation for this purpose, which

1A 1× 1 convolution is a weighted average over all feature maps, taken at every time point. The weights
are learnable parameters.
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Algorithm 8 General anomaly detection algorithm using the TCN-AE architecture. The
estimation of x̄ and Σ might also have to be computed in batches according to the method
described in Sec. B.2.1.

1 Adjustable parameters:

2 Mτ : anomaly threshold (see Sec. 7.4.2.1), ℓ: error window length

3 Ttrain: length of training sub-sequences, B: batch size

4

5 function anomalyDetect(x[n]) ▷ x : T→ Rd, T = {0, 1, . . . , T − 1}
6 Construct model tcnae() and Initialize the trainable parameters

7 Xtrain ← { Sub-sequences of length Ttrain taken from x[n] }
8 for {1 . . . nepochs} do
9 train(tcnae,Xtrain) ▷ Train with random mini-batches of size B

10 x̂[n]← tcnae(x[n]) ▷ Encode and reconstruct x[n]

11 e[n]← x[n]− x̂[n] ▷ reconstr. error e : T→ Rd

12 E[n]← slidingWindow(e[n], ℓ) ▷ E : T→ Rℓ×d

13 E′[n]← reshape(E[n]) ▷ E′ : T→ Rℓ·d

14 µ,Σ← estimate(E′[n]) ▷ Mean µ ∈ Rℓ·d, Cov. Mat. Σ ∈ Rℓ·d×ℓ·d

15 M [n]← (E′[n]− µ)⊺Σ−1(E′[n]− µ) ▷ Mahalanobis distance

16 a[n]←
{

0 if M [n] <Mτ
1 else

▷ Binary anomaly flags

17 return a[n] ▷ Return anomaly flag for each time series point

duplicates each point in the series s times. Subsequently, the upsampled sequence is passed
through a second TCN block, which has the same structure as the TCN block in the encoder
(but untied/independent weights). Finally, to restore the original dimension d, another
1 × 1-convolutional layer with d filters is used to obtain the reconstruction (the output)
x̂[n] = dec(H[n]), x̂ : T → Rd. The architecture of the baseline TCN-AE is depicted in
Figure 7.2. Once TCN-AE is trained, the input sequence and its reconstruction will be used
for detecting anomalies, as described in the next section.

7.3.2 Initial Experiments

7.3.2.1 Experimental Setup

Anomaly Detection Algorithms As before, all training algorithms are unsupervised,
i. e. they do not need the true anomaly labels during the training process. Only in order
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Figure 7.2: Architecture of the baseline TCN-AE as described in Section 7.3.1. The input of TCN-AE is
a sequence x[n] with length T and dimensionality d. The layers ”conv” and ”output” are 1×1 convolutions
with c and d filters, respectively. The TCNs have the dilation rates q . The layer ”pool” downsamples the
sequence by a factor s. Configuration for MGAB: d = 1, c = 8, nfilters = 20, and s = 42. Configuration for
ECG-25 benchmark: d = 2, c = 4, nfilters = 32, and s = 32.

to find a suitable anomaly threshold, a small fraction of labels is used, as described below.
Otherwise, the anomaly labels are only used at test time to evaluate the performance of
the individual algorithms. In one run, each algorithm is trained for ten rounds: in the i-th
round, the algorithms are trained on the i-th time series and evaluated on the time series
{1, . . . , 10} \ {i}. In total, we perform ten runs with different random seeds. In order to
find suitable hyper-parameters for each algorithm, we use the hyperopt library [14] and
optimize the F1-score on a separate MG time series. For all neural networks, we use the
Adam optimizer [82] to train the weights by minimizing the MSE loss. Additionally, all
time series (having a dimension of d = 1) are standardized to zero mean and unit variance.

DNN-AE [46]: we use a PyTorch [130] implementation for the anomaly detection algo-
rithm based on a deep autoencoder [58]. The algorithm requires several parameters, which
we choose as follows: batch size B = 100, number of training epochs nepochs = 40, sequence
length Ttrain = 150 and a hidden size of h = 10 for the bottle neck (which results in a com-
pression factor of Ttrain/h = 15 for each sequence). Finally, we set %Gaussian = 1%, which
specifies that 99% of the data is used to estimate a Gaussian distribution for the anomaly
detection task.

LSTM-ED [108] is also implemented using PyTorch and uses the following parameter
setting: batch size B = 100, number of training epochs nepochs = 20, sequence length
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Ttrain = 300, hidden size h = 100 and %Gaussian = 1%. Both, encoder and decoder use a
stacked LSTM network with two layers.

NuPIC [160]: Numenta’s anomaly detection algorithm has a large range of hyper-
parameters which have to be set. We use the parameters recommended by the authors
in [89]. It is possible to tune the parameters with an internal swarming tool [3]. However,
this is a time-expensive process which is not feasible for the large MGAB dataset.

LSTM-AD [161]: here we select the following parameters: batch size B = 1024, number
of training epochs nepochs = 30, and sequence length Ttrain = 128. A 2-layer LSTM network
with 256 units in the first layer and 128 units in the second layer is used. The target horizons
are chosen to be H = (1, 3, . . . , 51).

TCN-AE (baseline): The main TCN-AE parameters are given in Fig. 7.2. Additionally
we use the sequence length Ttrain = 1050, batch size B = 32 and nepochs = 40. For baseline
TCN-AE, we use an existing TCN implementation in Keras [140]. The dilation rates are
q = (1, 2, . . . , 16) and the kernel size of the TCNs is set to k = 20.

We determine this threshold for all algorithms as follows: A sub-sequence containing
10% of the data is taken, and the anomaly threshold is optimized on this short sequence,
such that the F1-score is maximized. The optimal threshold is then fixed for the complete
time series, and the overall results are obtained. Since the results can vary depending on
which sub-sequence is used for the threshold adjustment, we repeat the above procedure,
similarly to k-fold cross validation, for ten different 10% sub-sequences of the considered
time series and record the results for the ten different sub-sequences.

7.3.2.2 Learning Time Series Representations

In our first experiment, we want to assess the capabilities of the TCN-AE architecture to
learn representations of time series. For this purpose, we train a TCN-AE model using many
different MG time series with a varying time delay parameter τ . Ideally, TCN-AE should
learn the main characteristics of the individual time series and find suitable compressed
representations. In our experiment, we use TCN-AE on 105 different Mackey-Glass time
series (104 for each τ in the range of τ = 11 . . . 20). Each time series of length 256 is
encoded into a 2-dimensional compressed representation. The algorithm is trained in an
unsupervised manner. Hence, τ is not passed to the algorithm at any time. Surprisingly,
even with this large compression rate of 128, TCN-AE can find an interesting embedding
for the MG time series, as depicted in Fig. 7.3 (top). For a certain τ , all samples are placed
in only one connected cluster (except for a few satellites), and these clusters are mostly –
with a few small exceptions – non-overlapping.

For comparison, we repeated the same experiment with the popular t-SNE [105] cluster-
ing algorithm. We executed t-SNE on a GPU with the help of a certain CUDA implemen-
tation [25]. We tried different parameter settings and finally fixed the perplexity parameter
to 200, the learning rate to 10, and the number of iterations to 104. The results for t-SNE
in Fig. 7.3 (bottom) indicate that it is not a trivial task to find suitable representations
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Figure 7.3: Top: 2d-representation of 105 (104 for each τ) different Mackey-Glass time series using TCN-
AE (baseline). The (unsupervised) algorithm is capable of learning an encoding which separates the MG
time series fairly well according to their τ value.
Bottom: 2d-representation of the same MG time series, but now using t-SNE [105] to find suitable encod-
ings.
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Figure 7.4: Similar to Fig. 7.3 (top). But now we encode each MG time series into a 3d-vector.

for MG time series. t-SNE has more difficulties in comparison to TCN-AE to cluster all
sequences with a particular time delay parameter τ in only one connected region.

7.3.2.3 Anomaly Detection on the Mackey-Glass Anomaly Benchmark

In a second experiment, we compare TCN-AE to several state-of-the-art anomaly detection
algorithms on the Mackey-Glass Anomaly Benchmark. For each algorithm, except NuPIC,
ten runs were performed. Hence, for each algorithm and time series, ten different models
are trained, and each model is evaluated on the other nine time series. NuPIC is entirely
deterministic and does not require several runs. Additionally, as described in Section 7.3.2.1,
the anomaly threshold for each algorithm and time series is tuned on ten different sub-
sequences. We add up the TP, FN, and FP over all ten time series and summarize the
results in Tab. 7.1. Up to 100 anomalies can be detected in total. We can see that the
(deep) DNN-AE detects most of the anomalies (approx. 92), missing only about eight on
average. However, this result is achieved at the expense of producing many false-positives.
Overall, DNN-AE produces more than 60 false positives on average, while TCN-AE produces
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less than one. Hence, DNN-AE achieves the highest recall among all algorithms but ranks
only 3rd in F1-score, due to its low precision. TCN-AE scores best in F1-score and precision.
NuPIC has the poorest performance in all measures.

Table 7.1: Results for MGAB. The results shown here (mean and standard deviation of 10 runs and ten
sub-sequences, are for the sum of TP, FN, and FP over all ten time series. For each algorithm and time
series, the anomaly threshold was tuned on 10% of the data using a cross-validation approach: the threshold
is tuned on ten different 10%-sequences of the data.

TP FN FP Precision Recall F1-score
Algorithm

NuPIC [160] 3.00 97.00 132.00 0.02 0.03 0.03
LSTM-ED [108] 14.60± 5.86 85.40± 5.86 57.00± 20.43 0.21± 0.08 0.15± 0.06 0.17± 0.06
DNN-AE [58] 91.79± 1.22 8.21± 1.22 62.58± 13.65 0.60± 0.06 0.92± 0.01 0.72± 0.04
LSTM-AD [161] 88.80± 2.59 11.20± 2.59 0.62± 0.61 0.99± 0.01 0.89± 0.03 0.94± 0.01
TCN-AE 90.54± 1.72 9.46± 1.72 0.20± 0.47 1.00± 0.01 0.91± 0.02 0.95± 0.01
[this work]

7.3.3 Discussion

The initial results that we obtained with our new TCN-AE architecture are promising. The
learned representations (Fig. 7.3) on different MG time series appear to be useful and may
reveal interesting insights. For anomaly detection, we achieve with TCN-AE and LSTM-
AD the highest F1-score on the non-trivial MG benchmark. Remarkably, all algorithms
except NuPIC require many trainable weights. TCN-AE had 164 451 parameters, DNN-AE
241 526, LSTM-ED 244 101 and LSTM-AD 464 537. That is, the other high-performing
algorithms require 50%–300% more trainable weights than TCN-AE.

Generally, we would expect TCN-AE to perform better than, for example, DNN-AE on
tasks where a larger receptive field (memory) is required in order to detect anomalies since
its hierarchical architecture allows to exponentially increase the receptive field while the
number of parameters scales linearly.

Although the initial results of TCN-AE on MGAB look promising and although we could
observe that the algorithm is capable of learning representations of MG time series, there
are several limitations of the algorithm, which leave room for improvement and which we
are planning to address in the future work: (1) Many parameters (approximately 160 000)
are required for satisfactory MGAB results. TCN-AE’s performance significantly drops
if the number of filters nfilters and/or the kernel size k is reduced. (2) Baseline TCN-
AE is somewhat sensitive towards the maximum dilation rate qmax. For example, if we
add a dilated convolutional layer with qmax = 32 to both TCNs in the architecture, the
performance significantly drops. (3) The net requires relatively many epochs until it learns
the subtle differences between nominal and abnormal MG time-series patterns. TCN-AE
requires ≥ 40 training epochs to learn to detect anomalies on the MG time series. It has to
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be investigated if this holds for other (real-world) applications as well and if optimizations
of the training-configuration might reduce the required epochs.

7.3.4 Summary

In this section, we proposed with TCN-AE an autoencoder architecture for multivariate time
series. We evaluated it on various Mackey-Glass (MG) time series for two relevant tasks:
representation learning and anomaly detection. The initial results on various Mackey-Glass
(MG) time series are promising. TCN-AE could learn a very interesting representation in
only two dimensions, which accurately distinguishes MG time series differing in their time
delay values τ (Section 7.3.2.2). On the Mackey-Glass Anomaly Benchmark (MGAB), TCN-
AE achieved better anomaly detection results than other state-of-the-art anomaly detectors
(Section 7.3.2.3).

In the following section, we will address the limitations of baseline TCN-AE mentioned
before and propose several extensions to improve the overall performance of TCN-AE.

7.4 An Improved TCN-AE Architecture

The goal of this section is to improve the baseline TCN-AE architecture based on the limi-
tations discussed in the previous section. Overall, we suggest six modifications. We analyze,
discuss, and compare the capabilities of the improved TCN-AE architecture on a challeng-
ing real-world HMS application, namely the detection of arrhythmias in electrocardiogram
(ECG) signals of heart patients.

7.4.1 Enhancements of the Baseline TCN-AE

7.4.1.1 Skip Connections

While experimenting with the encoder and decoder’s dilation rates, we noticed that the
performance of the baseline TCN-AE is somewhat sensitive to the choice of the maximum
dilation rate qmax. We believe that this problem occurs because only the TCN’s final dilated
convolutional layer is passed on to the following layer, i.e., the original TCN does not provide
any mechanisms for feature reuse. However, especially for TCNs, which process a time
series signal at different time scales, it might be detrimental to solely use the last dilated
convolutional layer’s output, since other time scales might also carry essential information.
Instead, it should be possible to access the features at all time scales.

To provide for the possibility of feature reuse in TCN-AE, we add so-called skip con-
nections to our architecture. A skip connection copies the output of a particular layer and
concatenates it to the input of a subsequent layer of the network. In our setup, we use
a concatenation layer in the end of encoder and decoder, which collects the outputs of all
previous dilated convolutional layers.
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In the encoder shown in Fig. 7.5, we add skip connections from every dilated convolu-
tional layer to the encoder’s bottleneck (after reducing the number of channels to 16), where
the outputs of the individual layers are concatenated along the channel axis. The bottleneck
reduces the number of channels of the concatenated outputs with a 1 × 1-convolution and
downsamples the resulting signal to obtain a compressed encoding.

In the decoder shown in Fig. 7.6 we also place skip connections from each dilated con-
volutional layer to the output, where lastly, a 1× 1 convolution reconstructs the time series
with the original dimension d.

Relation to other Architectures Many modern DL architectures adopt skip connec-
tions. In ResNets [60], for example, shortcut connections perform an identity mapping,
skipping one or more layers. Their outputs are then added to the skipped layers’ outputs
(not concatenated as in our approach). ResNets were among the first architectures that
address the so-called degradation problem [60] (a problem observed in practice, where very
deep neural networks surprisingly produce higher training errors than shallow nets) and
have shown to improve the results on many problems.

In a DenseNet [66], each layer uses the output of all preceding layers as input and passes
on its output to all subsequent layers. Due to this structure, many direct connections are
necessary (in a network with L layers, there are L(L+1)/2 direct connections). Nonetheless,
the authors could significantly reduce the number of required parameters in the overall
network, since the number of filters in all layers could be decreased. DenseNets address
similar problems as ResNets and are insofar more similar to our TCN-AE in that they also
concatenate the feature maps of previous layers and do not add them (as in ResNets).

7.4.1.2 Dilation Rate Ordering

In the setup of the baseline TCN-AE, we use the identical TCN architecture for the encoder
and decoder, with the same number of filters nfilters, filter lengths k and dilation rates qi.
In the decoder of the baseline TCN-AE, right after the upsampling layer, the first dilated
convolutional layer has a dilation rate of q = 1. However, if we keep in mind that the
upsampling layer uses sample-and-hold interpolation, which repeats each sample s = 32
times, a dilation rate of q = 1 might be ineffective. Due to the upsampled signal’s coarse
structure, the filters are mostly moved over ranges of identical values. A straightforward
yet beneficial enhancement is to reverse the dilation rates in the decoder. Hence, now the
last dilated convolutional layer before the output layer will have a dilation rate q = 1, the
penultimate layer q = 2, and the first layer (after the upsampling layer) a dilation rate of
2L−1. With this approach, larger dilation rates are used on coarser levels. In our architecture
with L = 7 dilated convolutional layers, we use the dilation rates (1, 2, 4, . . . , 64) for the
encoder, and the dilation rates (64, 32, 16, . . . , 1) for the decoder (see the green sticks in
Fig. 7.5 and 7.6).
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Figure 7.5: The architecture of TCN-AE’s encoder. The two-dimensional input ECG-signal (purple)
of length T , is passed through a stack of dilated convolutional layers (light orange, dConv1 – dConv7).
The light green boxes represent the filters of the dilated convolutions. Each dilated convolutional layer is
followed by a 1 × 1 convolution, which reduces the number of channels to 16. The outputs of the 1 × 1
convolutions are also concatenated in the block concat1 (blue). The dark blue blocks are identity mappings,
not altering the tensors. Overall, seven tensors are concatenated, resulting in 7 · 16 = 112 channels.
Finally, the concatenated tensor is compressed into the final encoded representation (red). The compressed
representation of the original input is then passed to the decoder (Figure 7.6).

7.4.1.3 Utilizing Hidden Representations for the Anomaly Detection Task

While studying the relation of dilated convolutions to the DWT (Section 7.2.3), we noticed
some similarities to our prior work [164]: In that work, we used the DWT to analyze a time
series signal on different frequency scales to detect anomalous behavior. Each frequency
scale was analyzed independently, and the aggregated results then led to an anomaly score
for each data point of the time series. Similarly, transferred to the TCN-AE architecture,
one could imagine that each dilated convolutional layer’s output corresponds to an indi-
vidual frequency/time scale, which already might carry useful information for the anomaly
detection task. Hence, it could be sensible to look at the reconstruction error signal of
TCN-AE and also individual hidden representations of the network to identify anomalies.

We take the output of each map-reduction layer (see section 7.4.1.4) in the encoder and
reduce the feature map channels with a 1 × 1-convolution to size one. This is like taking
each blue bar from Fig. 7.5 and reducing it to one output channel. We then stack each of the
reduced outputs onto the reconstruction error signal. If there are seven dilated convolutional
layers in the encoder (q = 1 . . . 64) and the reconstruction error signal is two-dimensional,
seven additional hidden representations will be stacked onto the reconstruction error signal.
We end up with a 9-dimensional signal to which we apply Algorithm 8. With this approach,
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Figure 7.6: The architecture of TCN-AE’s decoder. A compressed representation is given as input (purple)
and then upsampled (red layer) to the original length T . Similar to Figure 7.5, a stack of dilated convolu-
tional layers operates on the upsampled signal and the outputs of the 1×1 convolutions are concatenated in
the concat3 block. Finally, the output layer (convolution with linear activation), reconstructs the original
two-dimensional ECG sequence.

we can not only search for anomalies in the reconstruction error but also find irregularities
in various hidden feature representations of the input time series.

Note that this enhancement is not shown in Figs. 7.5 and 7.6 to keep the complexity of
the figures manageable.

7.4.1.4 Feature Map Reduction

A more technical enhancement of TCN-AE is the introduction of convolutional map re-
duction layers (commonly referred to as 1 × 1 convolutional layers) [96, 156], which are
regularly used in practice to reduce the dimensionality (the number of channels) of feature
maps and effectively reduce the number of trainable parameters in the overall architecture.
We experimented with 1 × 1 convolutional layers and found that they allow reducing the
overall number of parameters in the network, without sacrificing performance. Additionally,
we could observe a slight improvement in the training time. We place 1 × 1 convolutions
after each dilated convolutional layer, which reduces the number of channels from 64 to 16.

7.4.1.5 Anomaly Score Baseline Correction

While visualizing the anomaly score of the TCN-AE model for a few time series, we noticed
that the anomaly score did not always have a constant baseline, as one would expect. We
observed slight drifts in the baseline, which made it hard in some cases to find a suitable

104



threshold value. One reason for this phenomenon could be that certain statistical properties
of the signal (such as the random noise) change over time. Since these drifts correspond to
low-frequency components in the anomaly score, a simple way to remove them is to filter the
anomaly score. We decided to use a second-order Butterworth filter with a cutoff frequency
of 1Hz to remove the baseline wandering.

7.4.2 Experimental Setup

In this chapter, we compare all considered algorithms on the ECG-25 benchmark, described
in Section 2.3. If not stated otherwise, we sum TP, FN, and FP over all 25 ECG time
series. From these three quantities, the well-known metrics precision (Prec), recall (Rec),
and F1-score are derived.

7.4.2.1 Algorithmic Setup

We compare our unsupervised TCN-AE algorithm to four other unsupervised anomaly de-
tection algorithms: DNN-AE [46], LSTM-ED [108], LSTM-AD [161], and NuPIC [160].
They are based on deep autoencoders (DNN-AE), LSTM networks (LSTM-ED and LSTM-
AD), and hierarchical temporal memory, HTM (NuPIC).

All anomaly detection algorithms are trained in an unsupervised fashion. The actual
anomaly labels are only used at test time. The training process passes the complete time
series to the anomaly detection algorithm, and the algorithm learns a model for the provided
data and returns an anomaly score for each data point of the time series. We trained all
algorithms, except NuPIC (which does not support GPU capabilities), on a Tesla P100 GPU.
All algorithms require a set of hyperparameters, which we will describe in the following.
Parameters common to all algorithms are summarized in Tab. 7.2. We tuned the parameters
(except for TCN-AE and NuPIC) using the hyperopt library [14]. For TCN-AE, we
manually investigated different parameter settings, and for NuPIC, we use the recommended
parameter settings [89].

To obtain statistically sound results, we run each anomaly detection algorithm ten times
on all 25 ECG time series.

DNN-AE [46]: We use a PyTorch [130] implementation for the anomaly detection algo-
rithm based on a deep autoencoder [58]. The algorithm requires several parameters, which
we choose as follows: hidden size of h = 6 for the bottle neck (which results in a compression
factor of Ttrain/h = 25 for each sequence). Finally, we set %Gaussian = 1%, which specifies
that 99% of the data is used to estimate a Gaussian distribution for the anomaly detection
task.

LSTM-ED [108] is also implemented using PyTorch and has the following parameter
setting: %Gaussian = 3%. Both, encoder and decoder use a stacked LSTM network with two
layers, each having LSTM layer having 50 units.

NuPIC [160]: Numenta’s anomaly detection algorithm has a broad range of hyper-
parameters that have to be set. We use the parameters recommended by the authors
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in [89]. It is possible to tune the parameters with an internal swarming tool [3]. However,
this is a time-expensive process which is not feasible for the large benchmark.

LSTM-AD (Chapter 6, [161]): A 2-layer LSTM network with 256 units in the first
layer and 128 units in the second layer is used. The target horizons are chosen to be
H = (1, 3, . . . , 49).

SORAD (Chapter 4, [163]) We use SORAD with mini-batch RLS – using small batches
to update the model instead of single examples (see Appendix B.1) – as a simple baseline
method. The batch size is set to µ = 256. The target horizons H = (1, 3, . . . , 49) are the
same as for LSTM-AD. The forgetting factor is set to λ = 0.98. The window length for
the sliding window is w = 128. Hence, the number of trainable weights of the model is 129
(including one bias weight). The regularization parameter was set to β = 10−5.

TCN-AE (baseline): The settings of the baseline TCN-AE model (Figure 7.2) mostly
correspond to the settings of the final variant. Only the maximum dilation rate is chosen
smaller so that q = (1, 2, . . . , 32) and the number of filters for each dilated convolutional
layer is reduced to nfilters = 32. Nonetheless, the number of trainable parameters of the
baseline TCN-AE is larger due to the two consecutive layers which are created for each
individual dilation rate. For baseline TCN-AE, we use an existing TCN implementation in
Keras [140].

TCN-AE (final): We implemented TCN-AE using the Keras [30] & TensorFlow frame-
work [1]. An overview of the architecture with its parameters is given in Figures 7.5 and 7.6.
In both encoder and decoder we use 7 dilated convolutional layers each, with the dilation
rates q = (1, 2, . . . , 64) (encoder) and q = (64, 32, . . . , 1) (decoder), nfilters = 64 filters with a
kernel size of k = 8, and a ReLU activation. Each dilated convolutional layer is followed by
a 1× 1 convolutional layer with nfilters = 16 filters, which reduces the feature maps from 64
to 16. The sample rate of the average pooling layer is s = 32 and the error window length
for the anomaly detection in Algorithm 8 is ℓ = 128. For MGAB, we use q = (1, 2, . . . , 16),
nfilters = 32, k = 25, B = 64, nepochs = 10, Ttrain = 1050, nfilters = 16 filters for the skip
connections, s = 6, and ℓ = 128.

Table 7.2: Summary of the common parameters of the neural-network-based anomaly detection algorithms
used in this work.

Algorithm B nepochs Ttrain Loss Optimizer Initializer
TCN-AE 64 10 1024 logcosh Adam Glorot Normal [50]

DNN-AE 100 25 150 MSE Adam U(−
√
k,
√
k), k = 1

fanin

LSTM-ED 100 10 30 MSE Adam U(−
√
k,
√
k), k = 1

fanin

LSTM-AD 512 25 256 MAE Adam Glorot Uniform [50]
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7.4.2.2 Evaluation

For most results presented in this section, we use the EAC criterion to determine precision,
recall and F1-score. To evaluate the performance of the algorithms over a wide range of
anomaly thresholds, we also generate a precision-recall curve. In the other cases, we select
an optimal threshold in a supervised manner for a small fraction of the time series data
and then apply this threshold to the overall time series. If not stated otherwise, we select
a segment containing 10% of a time series and find the threshold which maximizes the F1-
score on this small subset. Since the results may vary, depending on which 10%-segment
is used, we repeat the whole evaluation procedure 10 times and average the results: adjust
the threshold on 10% of the data, evaluate on the remaining 90% of the data. We assess
the significance of the results with the non-parametric Wilcoxon signed-rank test [178] and
report the p-values.

7.4.3 Evaluation of TCN-AE on MGAB

Before performing the experiments on the ECG-25 benchmark, we first run our enhanced
TCN-AE algorithm on MGAB and compare the results with the results reported in the
previous section. The anomaly threshold is determined by using 10% of the anomaly labels
supervisedly, as described in the experimental setup (Sec. 7.3.2.1) of the previous section.
The results for the final TCN-AE model are summarized in Table 7.3 and compared to the
three other best models. The results for TCN-AE (baseline), LSTM-AD and DNN-AE are
copied from Table 7.1. We can see that the performance of TCN-AE (final) is similar to
TCN-AE (baseline) and LSTM-AD. However, instead of originally 164 451 trainable weights,
TCN-AE (final) now only has 38 423 weights. Also the computation time could be drastically
reduced from an aaverage time of 65 seconds (baseline) to about 17 seconds / time series.

Table 7.3: Similar to Table 7.1. Here, we also list the results for TCN-AE (final). Additionally, we also
list the p-values, indicating the significance of the results.

TP FN FP Precision Recall F1

Algorithm

DNN-AE [58] 91.8± 1.2 8.2± 1.2 62.6± 13.6 0.600± 0.058 0.918± 0.012 0.724± 0.043
LSTM-AD (Ch. 6,[161]) 88.8± 2.6 11.2± 2.6 0.6± 0.6 0.993± 0.007 0.888± 0.026 0.937± 0.014
TCN-AE (final) 90.6± 1.9 9.4± 1.9 0.4± 0.7 0.995± 0.008 0.906± 0.019 0.948± 0.010
TCN-AE (baseline) 90.5± 1.7 9.5± 1.7 0.2± 0.5 0.997± 0.011 0.905± 0.021 0.949± 0.010

7.4.4 Experiments, Results & Discussion for the ECG-25 Bench-
mark

We started our experiments with the baseline TCN-AE model (Section 7.3.1). The initial
results on the ECG-25 benchmark were already promising, but the algorithm still performed
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Figure 7.7: Excerpt showing how the final TCN-AE model reconstructs the modified limb lead II (MLII)
and the modified lead V1 of ECG signal #1. TCN-AE has difficulties in reconstructing actual anomalous
behavior (highlighted with the red shaded area). Due to the resulting large error, the algorithm later
correctly detects an anomaly (true positive).

similar to LSTM-AD and DNN-AE concerning the F1-score (Table 7.6), leaving room for
improvements. While analyzing the baseline TCN-AE, we developed several ideas for im-
provements, which we introduced in Section 7.4.1. The resulting (final) TCN-AE showed
significantly improved performance, achieving a higher precision and recall on 15 out of 25
time series of the benchmark. We perform a more detailed analysis of the contribution of
the individual enhancements in the following Section.

Figure 7.7 depicts an example for ECG signal #1, where the TCN-AE algorithm has
difficulties reconstructing the original time series due to an actual anomaly present. In this
case, the large construction error is correctly interpreted as anomalous behavior. For the
same example, we visualize selected activations of several layers inside the trained TCN-AE
in Figure 7.8. While the ECG’s general patterns are still visible in the initial layers of
the encoder, these disappear in later layers, and the activations do not seem to carry any
information appearing useful to the human eye. After being passed through the bottleneck
and upsampled again, only a 4-channel (from which one is depicted in the graph) step-
shaped signal remains. However, remarkably, the decoder can almost accurately restore the
original input sequence solely from this coarse representation (sixth row in the plot). Only
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the anomalous pattern is incorrectly reconstructed, which results in a large reconstruction
error that can easily be detected.

7.4.4.1 Contribution of the Individual TCN-AE Components

In the following, we describe the impact of individual enhancements on the final TCN-AE,
which we introduced in Sec. 7.4.1.

Variant Section Comment
baseline 7.3.1 Baseline algorithm based on TCNs without any enhancements
noSkip 7.4.1.1 Skip-Connections removed from the architecture

noInvDil 7.4.1.2 Use same dil. rate ordering for encoder & decoder
noLatent 7.4.1.3 Do not use hidden represenations for anomaly detection
noRecon 7.4.1.3 Only use hidden representations of encoder for anomaly detection

noMapReduc 7.4.1.4 Do not use the Map reduction layers
noAnomScoreCorr 7.4.1.5 Do not correct the baseline of the anomaly score

final 7.4.1 Final TCN-AE with all enhancements

Table 7.4: Summary of all TCN-AE variants

Although it is challenging to accurately measure each element’s effect on the final result
(since there might be some interaction effects between elements2), we can approximately
quantify the improvements with the following approach: In order to measure the contri-
bution of component C on the final result, we run TCN-AE on the benchmark with this
specific component turned off. If the component has a positive impact on the model, we
expect a poorer result, and the differences in precision, recall, and F1-score serve as a rough
indicator for the contribution of the component. Additionally, the p-value of the one-sided
Wilcoxon test signalizes the significance of the result. In Table 7.5, we summarize the
different variants of the TCN-AE algorithm. Further results are listed in Appendix A.

Overall, all the individual enhancements significantly improve the performance of TCN-
AE on the ECG-25 benchmark. As summarized in Table 7.5, the precision, recall and
F1-score all improve by around 10%. All enhancements have a significant impact on the
increase in performance, as indicated by the corresponding p-values. The p-values are also
illustrated graphically in a heat map in Figure 7.9 for all 25 time series of the benchmark.
We can see that the algorithm achieved an improvement for most time series. The exact
F1-scores for each TCN-AE variant and time series can be found in Table A.4. This table
also highlights the time series for which the p-values are above the significance level of 0.05.

Skip Connections The skip connections in TCN-AE allow the last layers of the encoder
and decoder to access all prior layers (having different dilation rates) directly. As shown

2We assume that the overall contribution of the individual components is larger than our estimations
due to the interaction effects which we cannot measure.
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Figure 7.8: Activations inside the trained final TCN-AE model for several layers of the network. For each
dilated convolutional layer, we plot the channel (signal) with the largest mean absolute activation. If we
compute and plot the mean over all channels, we get structurally relatively similar results. The rows dConv1
– dConv7 refer to the activations of the dilated convolutions inside the encoder, while dConv8 – dConv14
are dilated convolutional layers inside the decoder. The input signal contains an anomaly (atrial premature
beat), highlighted with the red-shaded vertical bar. The decoder fails in reconstructing this segment of the
time series, which results in a significant deviation between the original and reconstructed signal.
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Figure 7.9: Heatmap, showing the p-values for the comparison of our final TCN-AE model to various
algorithms and other variants of TCN-AE for all 25 ECG signals of our benchmark. We use a one-sided
Wilcoxon signed-rank test for the F1-scores of ten runs each. The test has the null hypothesis that the
median F1-score of our final TCN-AE is smaller (than the compared algorithm) against the alternative
that the median F1-score is larger. The first four rows represent anomaly detection algorithms from the
literature, while the remaining rows are for different variants of the TCN-AE algorithm. In the cases where
the p-value is below the significance level of α = 0.05, the tiles are colored black (indicating a significantly
higher performance of TCN-AE). White tiles indicate that the F1-scores of TCN-AE and the compared
algorithm are exactly the same. The exact F1-scores are given in Table A.4 and Table 7.9.

Table 7.5: Impact of the individual TCN-AE components for the ECG-25 data (mean and standard
deviation of 10 runs). The results shown here are for the sum of TP, FN and FP over all 25 time series and
were obtained such that an approximate (difference of less than 1% in precision and recall) equal accuracy
(EAC) is achieved for each algorithm and time series.

TP FN FP Prec Rec F1 p
Algorithm

baseline 597.5± 5.1 123.5± 5.1 129.0± 5.2 0.822± 0.007 0.829± 0.007 0.826± 0.007 2.531e-3
noSkip 622.4± 5.7 98.6± 5.7 102.9± 5.7 0.858± 0.008 0.863± 0.008 0.861± 0.008 2.531e-3
noLatent 629.5± 5.2 91.5± 5.2 95.3± 5.4 0.869± 0.007 0.873± 0.007 0.871± 0.007 2.531e-3
noAnomScoreCorr 644.2± 3.6 76.8± 3.6 83.2± 3.7 0.886± 0.005 0.893± 0.005 0.890± 0.005 2.531e-3
noInvDil 653.6± 1.9 67.4± 1.9 72.2± 1.9 0.901± 0.003 0.907± 0.003 0.904± 0.003 2.531e-3
noRecon 656.9± 2.9 64.1± 2.9 69.9± 2.9 0.904± 0.004 0.911± 0.004 0.907± 0.004 2.531e-3
noMapReduc 660.7± 1.3 60.3± 1.3 65.1± 1.4 0.910± 0.002 0.916± 0.002 0.913± 0.002 8.302e-3
final 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003 –

in Table 7.5 and Figure 7.9, this improvement has the highest impact on the performance
of TCN-AE: Without skip connections, the F1-score drops from F1 ≈ 0.93 to F1 ≈ 0.86.
However, for the model without the skip-connections, we had to decrease the number of
filters from nfilters = 64 to nfilters = 32; otherwise the results would be even worse.

111



7.4. AN IMPROVED TCN-AE ARCHITECTURE

We also experimented with different variants of a dense TCN-AE similar to a
DenseNet [66] (connecting all dilated convolutional layers with the preceding ones).
However, we decided to no longer pursue this approach, since the dense connections
increased the number of parameters and the computation time significantly without
considerably improving the results.

Although our primary purpose for the introduction of skip connections is to reduce the
sensitivity towards the maximum dilation rate and to enable the encoder/decoder to reuse
the features at different time scales, as a side effect, our TCN-AE architecture might also
benefit from other advantages associated with ResNets [60] or DenseNets [66]. Some of the
observed improvements might be due to a smoother curvature of the loss landscape [93],
alleviation the vanishing/exploding gradient problem & degradation problem due to gradient
shortcuts through the identity mappings of the skip connections, reduction of parameters,
and others.

We also tested higher dilation rates up to qmax = 1024 and found (apart from the higher
computation time and memory requirements3) that the results remained almost the same.
Only for qmax = 1024 we could observe a slight drop in the overall F1-score, from F1 ≈ 0.93
to F1 ≈ 0.91. Since the results do not change significantly with a larger stack of dilated
convolutional layers, this might imply that the TCN-AE model is capable of learning to
select the suitable features from the important time scales and to ignore the remaining
time scales which do not carry directly relevant features. In the baseline version, where no
skip connections were employed, the results significantly deteriorated for inappropriate (too
large/small) choices of qmax.

Dilation Rate Ordering In Figure 7.9, we can see that this reversed dilation rate scheme
improves the results on most of the considered 25 time series. While the reason for the
improvement is not entirely apparent yet, we assume that a larger dilation rate is beneficial
for the coarse step-shaped signal we have in the first layers of the decoder, and a lower
dilation rate is essential when we attempt to reconstruct the details of the original signal.

Detecting Anomalies in Hidden Representations of Time Series As discussed in
Section 7.4.1.3, we noticed that there are some similarities between the (stationary) discrete
wavelet transform (DWT) and DL architectures, which use stacks of dilated convolutional
layers. In [164], we used the DWT to decompose a time series and look for anomalous
behavior on different frequency scales. Similarly, we can also utilize the outputs of the
individual dilated convolutional layers, which process the time series on different time scales.
The general idea is that anomalies might become more apparent on some time scales than on
others and that one can already detect anomalous behavior on these hidden representations
rather than relying solely on the reconstruction error. In our first experiment, we used the

3Since the receptive field of the model increases with larger dilation rates, also longer training sequences
are required. (We assume that this is also partially due to the artifacts induced when the filters move within
the zero-padded areas.)
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encoder’s outputs of the dilated convolutional layers, reduced their number of channels to
one (with a 1 × 1 convolution), and stacked them on top of the reconstruction error e[n]
(line 11 in Algorithm 8). Although we observe a drop in the F1-score for 3 ECG signals
(#1, #16, #48) in Figure 7.9 (Table A.4), the overall results suggest that this approach
generally improves the results (Table 7.5). The overall F1-score increases from F1 = 0.89 to
F1 = 0.93 and the mean (median) F1-score is significantly higher (Figure 7.9 & Table A.4).

Similarly, in our next experiment, we tried also to utilize the decoder’s hidden represen-
tations. However, this did not have any further effect on the algorithm’s performance, and
we discarded this approach again.

We made another interesting observation: If we entirely remove the decoder after training
TCN-AE and solely use the outputs of the encoder’s dilated convolutional layers to detect
anomalies in the time series, still decent results can be obtained. In Table 7.5, we can
see that the F1-score only drops by about 0.02, although the size of the model (and the
computational cost for inference) is effectively halved. This observation might be interesting
for practical applications, where memory and computational resources are constrained.

Map Reduction Layers Although the primary purpose for the map reduction layers
(Section 7.4.1.4) was to reduce the number of parameters in the overall model, as a side
effect, we could observe a slight improvement in the overall performance, when considering
the sum over all TP, FP, and FN. However, the improvement is smaller than for the other
previously discussed enhancements. The mean (median) F1-score does not increase, as
shown in Figure 7.9 (Table A.4).

Anomaly Score Baseline Correction Also, the correction of the anomaly score baseline
using a Butterworth filter, as described in Section 7.4.1.5, has a notable impact on the
final results. Although there is only a significant improvement for 7 out of 25 time series
(Figure 7.9), the overall F1 drops by around 4% if we turn off the baseline correction of the
anomaly score, as reported in Table 7.5. Instead of using a filter, we also tested the more
advanced baseline correction algorithm by Zhang et al. [185], and obtained results which
did not significantly differ (F1-score of 0.920± 0.003).

7.4.4.2 Comparison to other Algorithms

In Table 7.6, we summarize the results for all algorithms. The table is sorted according to the
F1-score and shows the p-values for comparing the F1-scores of the individual algorithms
with TCN-AE. The first observation we can make is that TCN-AE (baseline and final
variant) outperforms the other five algorithms significantly (p-value < 0.05). On average,
TCN-AE detects 81 anomalies more than the second-ranked algorithm, LSTM-AD, while
at the same time also producing 80 fewer FPs. The overall F1-score of TCN-AE is around
15% higher than of DNN-AE and even 20% higher than of LSTM-ED.
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Table 7.6: Summary for the ECG-25 data (mean± σmean of 10 runs, except for the deterministic NuPIC
algorithm). The results shown here are for the sum of TP, FN and FP over all 25 time series and were
obtained such that an approximate (difference of less than 1% in precision and recall) equal accuracy (EAC)
is achieved for each algorithm.

TP FN FP Prec Rec F1 p
Algorithm

NuPIC 224.0 497.0 497.0 0.311 0.311 0.311 2.531e-3
SORAD 519.0 202.0 206.0 0.716 0.72 0.718 2.531e-3
LSTM-ED 557.3± 2.9 163.7± 2.9 168.9± 2.9 0.767± 0.004 0.773± 0.004 0.770± 0.004 2.531e-3
DNN-AE 583.7± 1.1 137.3± 1.1 142.9± 1.3 0.803± 0.002 0.810± 0.002 0.806± 0.002 2.531e-3
LSTM-AD 589.3± 0.8 131.7± 0.8 136.4± 0.5 0.812± 0.001 0.817± 0.001 0.815± 0.001 2.531e-3
TCN-AE (baseline) 597.5± 5.1 123.5± 5.1 129.0± 5.2 0.822± 0.007 0.829± 0.007 0.826± 0.007 2.531e-3
TCN-AE (final) 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003 –

Precision-Recall Curves Since the anomaly threshold trades off FNs (recall) and FPs
(precision), another way of showing the performance of an anomaly detection algorithm is to
vary the threshold over a wide range of values and plot the precision and recall for different
settings in a graph. In Figure 7.10, we generated such a precision-recall plot for all the
compared algorithms. The precision-recall plot can be seen as a bi-objective optimization
problem where one attempts to maximize both precision and recall. Each point in the graph
is obtained for a specific threshold value. We fit one curve as a rough approximation to the
points of the 10 runs. It can be seen that TCN-AE outperforms the other algorithms over a
wide range of anomaly thresholds. Especially along the identity line (precision=recall), the
difference of TCN-AE to the other algorithms becomes apparent.

Performance for individual Anomaly Types The ECG-25 benchmark contains nine
different anomaly types, as summarized in Table 2.2. Since the anomaly types take very
different shapes, we were interested in knowing how well TCN-AE can detect the individual
types and how it compares to the other anomaly detection algorithms. Table 7.7 shows how
many of the individual anomaly types were detected by the respective algorithms for an EAC
setting. Although TCN-AE has the most detections for only five out of nine anomaly types,
it is among the top three algorithms in each case. Furthermore, it produces significantly
less FPs in the EAC setting (if we would permit TCN-AE to also have more FPs, similar
to the other algorithms, it would detect even more anomalies). However, we still see room
for improvement. A more thorough investigation of the anomaly types that appear to be
hard for TCN-AE could lead to new insights and possible new enhancements.

Computing Anomaly Score with little Labled Data While we used EAC to deter-
mine all anomaly thresholds for the results presented in Table 7.6, we also investigated how
the results change when all algorithms may use only a small fraction of each time series’
labels to find a suitable threshold. This approach is more realistic for practical applications

114



0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

TCN-AE (final)
DNN-AE
LSTM-AD
LSTM-ED
NuPIC

Figure 7.10: Precision-recall curves for the individual algorithms on the ECG-25 data. Shown are the fits
through around 100 points which were generated by evaluating precision & recall for different thresholds.
For each algorithm, except NuPIC, 10 runs were performed.

since, usually, only little labeled data is available. In our specific experiment the algorithms
were only allowed to use 10% of the anomaly labels The detailed results are listed in the
appendix in Table A.2. We observe that the F1-score for all algorithms deteriorates com-
pared to Table 7.6, where the EAC was used. Nevertheless, TCN-AE (F1 = 0.79) still has
the highest performance (having the highest F1-score on 18 out of 25 time series), followed
by LSTM-AD (F1 = 0.67), LSTM-ED (F1 = 0.6), and DNN-AE (F1 = 0.57), while NuPIC
performs the worst (F1 = 0.22).

One interesting observation is that the recall of all algorithms is significantly higher than
the precision. A possible explanation for this is that for many 10% intervals, on which the
algorithms optimize their threshold, a threshold value can be found that results in a high
recall and high precision. However, this threshold is then too low for the remaining time
series, and many FPs are created as a consequence. This problem demonstrates that in
practice, more sophisticated methods are necessary to determine a suitable threshold. We
are planning to work on this issue in future work.

Finally, we compare in Table 7.8 the runtimes of all algorithms and the number of
trainable parameters. All TCN-AE variants are considerably faster than the remaining
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Table 7.7: Number of detected anomalies for the individual algorithms, broken down by anomaly type (in
total 9 types, see Table 2.2). We count the true detections when an EAC is used. The last two columns (FN
& FP) are the false negatives and false positives summed up over all anomaly types.The last row depicts
optimal results for each type.

a A e f F J V x | FN FP
Algorithm

NuPIC 2.0 32.0 1.0 1.0 5.0 2.0 172.0 3.0 6.0 497.0 497.0
SORAD 9.0 108.0 5.0 17.0 17.0 2.0 337.0 6.0 11.0 207.0 210.0

LSTM-ED 10.1 150.5 7.2 18.6 20.0 2.0 328.1 9.1 11.7 163.7 168.9
DNN-AE 9.9 212.4 7.4 21.5 21.8 1.0 290.9 8.9 9.9 137.3 142.9

LSTM-AD 6.4 213.4 4.2 5.8 18.4 2.0 316.9 12.4 9.8 131.7 136.4
TCN-AE (baseline) 9.6 176.9 5.5 18.8 18.9 1.8 345.0 9.0 12.0 123.5 129.0

TCN-AE (final) 10.4 213.7 6.3 20.2 19.5 2.4 369.8 16.5 11.4 50.8 55.8
Ideal 11 235 10 22 25 3 374 19 22 0 0

algorithms. TCN-AE final, the fastest algorithm is 5× faster than the fastest non-TCN-
AE algorithm (DNN-AE). LSTM-AD, ranked 2nd according to the F1-score, is by far the
slowest algorithm and required more than four days to complete ten runs. Furthermore,
LSTM-AD has the most trainable parameters. Also, NuPIC is relatively slow (around 750s
per time series) since no GPU acceleration is available.

Table 7.8: Computation times: average (per time series) and total (10 runs, all time series) for all
algorithms evaluated in this chapter. TCN-AE final is faster than baseline since it effectively has less
layers. SORAD and NuPIC are not directly compareable to the other approaches since they are not neural-
network-based and run only on one CPU core.

mean (s) total (h) #Params/103

Algorithm

SORAD (Ch. 4,[163]) 12.5±0.1 0.1 0.129
NuPIC [160] 752.0±23.4 52.4 –

TCN-AE final 47.6±0.4 3.3 123.8
TCN-AE baseline 97.0±1.1 6.7 208.4
DNN-AE [58] 237.5±10.3 16.5 242.1
LSTM-ED [108] 626.5±30.8 43.5 134.4
LSTM-AD [161] 1615.0±127.6 112.2 465.6

7.4.4.3 Additional Investigations

Outlier Detection Algorithms We experimented with different outlier detection algo-
rithms using different values of ℓ: The isolation forest [98] and extended isolation forest [57],
the one-class support vector machine (OCC-SVM [147]), local outlier factor (LOF) [19], an
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Table 7.9: F1-scores (mean ± σmean) of TCN-AE and the other algorithms on all 25 time series of the
ECG-25 benchmark (highest values in boldface). The p-values are computed with the one-sided Wilcoxon
signed-rank test, in which we compare the final TCN-AE algorithm with the other variants. We compare
the F1-scores of ten runs, which are obtained for an EAC. The Wilcoxon test has the null hypothesis that
the median F1-score of TCN-AE (final) is smaller than the compared algorithm against the alternative that
the median F1-score is larger. In all cases in which we fail to reject the null hypothesis at a confidence level
of 5%, we add a grey background the corresponding field.

NuPIC LSTM-ED DNN-AE LSTM-AD TCN-AE
F1 p F1 p F1 p F1 p F1

1 0.03 0.002 0.572±0.022 0.002 0.907±0.008 0.118 0.904±0.007 0.06 0.919±0.006
2 0.5 0.029 0.350±0.017 0.003 0.267±0.045 0.003 0.783±0.026 0.5 0.733±0.083
3 0.196 0.002 0.831±0.010 0.002 0.981±0.006 0.997 0.376±0.009 0.002 0.933±0.008
4 0.0 0.001 0.5 0.001 0.0 0.001 0.250±0.083 0.002 1.0
8 0.088 0.002 0.923±0.012 0.003 0.724±0.010 0.002 0.913±0.007 0.002 0.981±0.003
9 0.218 0.002 0.498±0.014 0.002 0.708±0.005 0.983 0.582±0.005 0.002 0.674±0.011
10 0.725 0.001 0.811±0.016 0.002 0.975±0.005 0.096 0.907±0.016 0.002 0.987
11 0.0 0.001 1.0 – 1.0 – 1.0 – 1.0
12 0.0 0.001 0.5 0.001 0.650±0.077 0.004 1.0 – 1.0
13 0.0 0.001 0.950±0.026 0.042 1.0 – 0.833 0.001 1.0
14 0.524 0.002 0.925±0.004 0.004 0.693±0.005 0.002 0.918±0.002 0.002 0.945±0.004
15 0.0 0.001 0.909 – 0.909 – 0.727 0.001 0.909
16 0.33 0.001 0.877±0.013 0.003 0.675±0.010 0.003 0.945±0.003 0.03 0.953±0.001
17 0.0 0.001 0.9 ±0.1 0.159 1.0 – 1.0 – 1.0
18 0.24 0.002 0.519±0.010 0.003 0.843±0.003 0.003 0.902±0.005 0.003 0.962±0.003
20 0.0 0.001 1.0 – 1.0 – 1.0 – 1.0
21 0.0 0.001 0.9 ±0.1 0.159 0.1 ±0.1 0.001 0.500±0.167 0.013 1.0
22 0.0 0.001 0.900±0.071 0.09 1.0 – 1.0 – 1.0
23 0.19 0.001 0.814±0.025 0.004 0.910±0.009 0.003 0.919±0.010 0.01 0.952
26 0.169 0.002 0.724±0.008 0.002 0.646±0.005 0.002 0.240±0.005 0.003 0.806±0.011
28 0.507 0.001 0.893±0.009 0.049 0.874±0.006 0.003 0.882±0.010 0.007 0.912±0.004
33 0.0 – 0.0 – 0.0 – 0.0 – 0.0
39 0.25 0.002 0.778±0.018 0.002 0.899±0.006 0.002 0.793±0.012 0.003 0.952±0.003
42 0.514 0.002 0.845±0.007 0.003 0.898±0.003 0.045 0.798±0.005 0.003 0.909±0.006
48 0.0 0.002 1.0 0.987 1.0 0.987 1.0 0.987 0.875±0.042
Σ 0.311 0.003 0.770±0.004 0.003 0.806±0.002 0.003 0.815±0.001 0.003 0.926±0.003
mean 0.179 0.003 0.757±0.008 0.003 0.746±0.005 0.003 0.767±0.006 0.003 0.896±0.006
median 0.129 0.002 0.837±0.009 0.003 0.883±0.003 0.003 0.882±0.006 0.003 0.953±0.002

elliptic envelope based on the minimum covariance determinant estimator (MCD) [142], and
finally, a simple method using only the Mahalanobis distance. Overall, we found the sim-
ple Mahalanobis-distance-based approach to deliver the best results. The other algorithms
could partially produce similar results but required significantly more computation time
and mostly required additional hyper-parameters, which had to be tuned first. Using the
Mahalanobis distance as the anomaly score has the advantage that the algorithm only has
to compute a mean vector and a covariance matrix, which is computationally less expensive
and does not require any additional hyper-parameters. One reason for the higher accuracy
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of this method over the other outlier detection algorithms could be that the reconstruction
errors are bell-shaped in every dimension (elliptic in higher dimensions), as we observed in
visualizations of the error distributions.

Downsampling and Upsampling Approaches We experimented with different ap-
proaches to create a bottleneck along the time axis and to restore the original time resolution
again. There are several possibilities to decimate/downsample a sequence by a factor s:

1. Resampling: Keep every s-th sample of the sequence. This is the simplest method but
could lead to artefacts in the resulting sequence, since there might be aliasing effects
if higher frequencies are present.

2. Average pooling: Use an average pooling layer, where groups of size s are averaged.
Effectively, the operation is a moving average whose output is resampled. In some
sense, average pooling acts as a crude low-pass filter, which removes higher frequencies
and reduces aliasing effects.

3. Max-Pooling: Similar to average pooling, with the difference that the maximum value
of groups of size s is selected.

4. Strided convolutions: One could use a convolutional layer where the filters are moved
with a stride of s. At the same time, the number of filters nfilters in this layer can be
used to reduce the dimension of the feature map to a desired size.

5. Stepwise downsampling with convolutional layers and (average) pooling: Smoothen
the downsampling process by using a sequence of pooling and convolutional layers. For
example, to achieve a downsampling rate of s = 32, one could use a series of 5 pooling
and convolutional layers.

6. Applying a regularizer to the activations: Instead of downsampling the sequence along
the time axis, sparsity can also be enforced by applying a regularizer to the activations
of the last layer in the encoder. We experimented with L1- and L2-regularization [12]
and the Kullback-Leibler [118] divergence as penalty terms.

Accordingly, we also tested several different upsampling techniques:

1. Sample-and-hold interpolation: This is the simplest upsampling approach, where each
sample is copied s times in order to recover the original length

2. Linear interpolation: Linearly interpolate between adjacent samples.
3. Tranposed convolutional layer: Use transposed convolutions [99, 40] to obtain the orig-

inal length of the time series. Transposed convolutions are still used often in practice,
but can suffer from so-called checkerboard effects [122].

4. Stepwise upsampling: Analogous to method 5 described in the previous list.
5. Max-Unpooling in combination with Max-Pooling [120].

Surprisingly, we observed that the results for the simple methods average pooling (down-
sampling step) and sample-and-hold interpolation (upsampling step) are similar and, in some
cases, even superior to the supposedly more advanced approaches.
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Figure 7.11: Similar to Figure 7.7, but now showing an excerpt of ECG signal #48. For both signals,
one can observe a slight shift to the right in the reconstruction of the 5th R-peak, which results in an
unusually large error and, ultimately, the TCN-AE algorithm falsely detects an anomaly (false positive) at
this position. Taking the (ECG) signal’s variability into account, in order to prevent situations like these,
is addressed in our ongoing work.

However, it might be possible that more sophisticated down- and upsampling methods
are beneficial in other situations, where the time-series data and algorithmic setup is differ-
ent. Especially for the downsampling, one has to consider that, when using naive decimation
approaches, aliasing effects might occur, which introduce artifacts into the compressed sig-
nal. We are planning to investigate this topic more thoroughly in the future.

7.4.4.4 Discussion

Only for the last ECG recording (#48), our final version of TCN-AE performs significantly
worse most of the other algorithms. Surprisingly, for this time series, the final TCN-AE is
also worse than most other variants without one of the enhancements, i.e., it is the combi-
nation of all additional modules that leads to the deterioration of the result for ECG signal
#48. We found that the final TCN-AE algorithm produced an additional false-positive
event, which reduces the overall precision on this time series. Exemplarily, we illustrate
the cause of this FP in Fig. 7.11: one can see that a reconstructed R-peak appears slightly
shifted, resulting in a large reconstruction error. The reason for this problem could be the
quasi-periodic nature of the ECG signal, which is a major challenge for many algorithms.
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Figure 7.12: Two segments taken from ECG time series #33. This time series only contains one isolated
QRS-like artifact (shown on the left side). The segment on the right side does not contain any anomalies,
although there is a significant change in the signal. These signal quality changes occasionally occurring in
this time series make it rather challenging for the unsupervised anomaly detection algorithms to detect the
single anomaly.

We could observe similar events of this kind in a few other time series as well. Without the
extra FP event in time series #48, TCN-AE would also achieve an F1-score of F1 = 1.0.

For time series #33 the results are unusual: we observe that all algorithms have F1 = 0.
This is because the time series contains only a single anomaly, which is rather hard to spot,
even for the human eye. In Figure 7.12, the problem is illustrated: While the segment on the
left contains the anomaly (an isolated QRS-like artifact), the segment shown on the right
does not contain any anomaly, although there are significant changes in the signal quality.
This makes it rather challenging for unsupervised algorithms to detect the single anomaly.
We could observe many such signal quality changes in time series #33. If we discarded time
series #33 from the benchmark, the average F1-score would improve for all algorithms; for
example, we would observe an increase from F1 = 0.896 to F1 = 0.933 for TCN-AE.

Also, there are a few other time series (#11, #17, #20, #22, #48) for which the majority
of algorithms obtained a perfect F1-score of F1 = 1.0. These time series (except #48, which
has four anomalies) only contain a single anomaly.

Although there are differences to supervised heartbeat classification algorithms, we found
that our results are also roughly comparable to a few works in the literature: In [86], a F1-
score of F1 = 0.93 is obtained, if we consider only the anomaly classes also used in this
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work. In [169], the F1-score on the test set for the overlapping anomaly classes is F1 = 0.84,
which is slightly lower than the score reported by us (F1 = 0.93, Table 7.5).

Overall, we have shown that the TCN-AE architecture can produce competitive results
on a challenging anomaly detection benchmark. We found that the TCN-AE architecture
has several appealing properties which can be advantageous in time series anomaly detection,
some of which we list in the following:

� Receptive field: Due to the hierarchical dilated convolutional structure, the size of the
receptive field of the network can easily be scaled to the requirements of the problem.

� Skip Connections: Due to the introduced skip connections, TCN-AE is less sensitive
towards the choice of the dilation rates (for example, we could choose dilation rates
1 . . . 64 or 1 . . . 256 and obtain similar results in both cases).

� Utilization of hidden Representations: Outputs of intermediate dilated convolutional
layers are utilized, which allows using information processed at different time scales.
This information is useful for obtaining an accurate reconstruction of the input and
scanning for anomalies at different time scales.

� Fast Training: Due to the parallelizable convolution operation, time series can be
processed very fast using GPUs (in this study, less than 50 seconds per time series, as
shown in Table 7.8).

� Number of Weights: TCN-AE appears to potentially require less trainable weights than
other architectures (e.g., recurrent neural networks) to obtain a good model accuracy.
However, this claim has to be verified in more thorough studies in the future.

7.5 Conclusion and Possible Future Work

In this chapter, we introduced a novel temporal convolutional autoencoder (TCN-AE) ar-
chitecture, which is designed to learn compressed representations of time series data in
an unsupervised fashion. It is, to the best of our knowledge, the first work showing the
combination of TCN and AE.

Starting with a baseline model and evaluating it on the Mackey-Glass anomaly bench-
mark (MGAB), we could already obtain promising results: The baseline TCN-AE performed
best among 3 other state-of-the-art algorithms and could learn interesting representations
of Mackey-Glass time series. However, we also noticed a few limitations which we addressed
and led to a new TCN-AE algorithm with several modifications. We demonstrated the
new algorithm’s efficacy on a challenging real-world anomaly detection task, consisting of
30-minute electrocardiogram (ECG) readings of 25 patients, and could outperform several
other unsupervised state-of-the-art algorithms on the investigated problem. Starting with
a baseline model, we showed that several extensions are crucial to increase the overall per-
formance. Particularly, we found that skip connections from the encoder’s dilated convolu-
tional layers to the bottleneck and skip connections from the decoder’s dilated convolutional
layers to the final reconstruction (output) layer improve the overall learning significantly.
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Furthermore, the utilization of hidden representations (the outputs of the individual dilated
convolutional layers) inside TCN-AE appears to be of considerable importance. The results
suggest that temporal anomalies become more apparent on some time scales than on others.
Another important finding was that TCN-AE was 5 times faster in our experiments than
the second fastest algorithm (DNN-AE, see Table 7.8).

In summary, we demonstrated that it is possible to train a deep learning model without
supervision, which can be used after training to detect anomalies in multivariate time series
data. The novel TCN-AE model proposed in this work appears to be particularly well suited
to learn long-range temporal patterns in complex quasi-periodic time series.

In our future research, we are planning to address several aspects of TCN-AE, which have
not been thoroughly understood or investigated yet: (a) Application of the architecture to
other challenging real-world anomaly detection problems. (b) Gaining more insights from
the representations that TCN-AE learns unsupervisedly (Fig. 7.3). (c) Approaches for
the determination of suitable anomaly thresholds with severely limited labeled data. (d)
Analyzing time series with a higher ratio anomalous/normal data: In this work, we analyzed
time series with not more than 250 anomalous events per patient. It is possible that TCN-
AE also works for data with more anomalies. We plan to investigate our algorithm for
settings with significantly larger anomaly ratios.
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Chapter 8

Conclusion and Outlook

Time series anomaly detection is an intriguing and also challenging topic that will likely not
lose any of its relevance in the future. Today, accurate anomaly detection algorithms are
already critical in system health monitoring or predictive maintenance (PdM) applications or
in detecting intrusions into organizational networks. The need for reliable anomaly detection
methods is expected to increase in the coming years. Particularly in the industrial context,
in the course of ongoing digitization, it will become necessary to analyze growing volumes
of data in an automated manner using sophisticated and efficient algorithms.

During the work on this thesis, we had the opportunity to look into the broad domain of
time series analysis and anomaly detection and add several contributions to this field. Our
focus was on so-called unsupervised machine learning (ML) approaches, and we could intro-
duce several novel algorithms with state-of-the-art performance. In unsupervised anomaly
detection problems, a model attempts to learn the normal underlying behavior of a system
without an external supervisor. The model’s understanding of normality is then used to
detect abnormal (anomalous) events. Unsupervised learning tasks are usually considered
harder than their supervised counterparts since no target function exists, which defines the
notion of normal. Instead, the algorithm has to learn to separate normal from anomalous
behavior. The reason why unsupervised learning methods are used for anomaly detection
is that labeled data are usually rather sparse. In the following, we will conclude this thesis
with a short summary, by answering the research questions formulated at the beginning of
the thesis and by discussing open questions, and giving an outlook on possible future work.

8.1 Discussion

We have presented four different unsupervised anomaly detection algorithms (some of them
in several variants) in the course of this work: SORAD, DWT-MLEAD, LSTM-AD and,
TCN-AE. SORAD learns a simple regression model to predict future values of a time series
and simultaneously estimate the prediction errors’ mean and variance. It operates fully
online (or using small batches, or completely offline) and is up-and-running after a very
short transient phase. Overall, due to its capabilities to adapt to new concepts, SORAD
could outperform other state-of-the-art algorithms on Yahoo’s Webscope S5 benchmark,
which contains many non-stationary time series. Also, DWT-MLEAD can be either used in
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8.1. DISCUSSION

online or offline settings. The main idea behind DWT-MLEAD is to examine a time series at
different time scales using the discrete wavelet transform (DWT) to detect short-range and
longer-range anomalies. For long-range anomalies, DWT-MLEAD performs better than
SORAD. While SORAD and DWT-MLEAD were mostly tested on relatively short time
series with less than 10 000 points, our deep learning approaches LSTM-AD and TCN-
AE were applied to time series with length 100 000 or more. LSTM-AD uses a stack of
recurrent long short-term memory (LSTM) neural networks. Similarly to SORAD, it is
trained to predict normal time series behavior. However, LSTM-AD is extended in many
aspects, which allows it to learn complex temporal patterns (such as in ECG data). For
complex quasi-periodic time series, we found that the window-based error correction method
introduced in Chapter 6 is crucial to improving the overall detection accuracy of LSTM-
AD. While we did not test it yet, this method might also be beneficial for some of the other
algorithms. It could also be integrated into the actual learning procedure (currently, it is an
extra module applied after computing the prediction errors). LSTM-AD is trained offline
and cannot adapt to new concepts in non-stationary time series. However, we found that it
can be used for time series with weak non-stationary behavior, such as baseline wandering
or signal quality changes.

For TCN-AE, we revisited the idea of analyzing time series at different time scales.
This is achieved with a convolutional neural network architecture based on so-called dilated
convolutions (which have their origin in DWT). TCN-AE is a reconstruction-based algorithm
with a novel autoencoder architecture that can also be applied to unpredictable time series.
It is possible to increase TCN-AE’s receptive field exponentially with only a linear increase
in the number of trainable weights. Due to the exponentially increasing receptive field in
TCN-AE, it is the only algorithm that can learn long-term correlations in time series. Like
LSTM-AD, TCN-AE can also work with time series that exhibit some baseline wandering
or changes in the signal quality/noise. It significantly outperforms other state-of-the-art DL
architectures in terms of precision & recall, computation time, and the number of trainable
weights on the challenging ECG benchmark and MGAB (both introduced in Section 2.3).

Not surprisingly, our DL models LSTM-AD and TCN-AE require more training data
than the other approaches, mainly due to the large number of trainable parameters. Hence,
they are more likely to perform well when trained on longer time series with several ten-
thousand points but not when trained on small data sets with less than a few thousand
points. On the other hand, all algorithms can deal with very long time series and have no
restrictions in this regard.

The main ingredient for DWT-MLEAD and TCN-AE to reliably detect short- and long-
range anomalies simultaneously are their hierarchical temporal architecture and their ca-
pability to analyze time series at different time resolutions. The general idea in both ap-
proaches is that anomalies might become more apparent on some time scales than others.
DWT-MLEAD realizes this with a decimating DWT. In practice, the DWT of a signal is
computed by passing it through a series of filters and subsampling layers. The parameters
of the filters are not trainable and depend on the choice of the mother wavelet. Similarly,
TCN-AE uses dilated convolutional layers (which have their origin in DWTs), however, with
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trainable filters. In both approaches, the temporal receptive field can easily be doubled by
adding a new layer.

Theoretically, all our algorithms can process multivariate time series. However, in this
work, DWT-MLEAD was only tested on univariate time series and would require some
minor modifications for higher dimensions.
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ADVec [173]
√ √ √

DNN-AE [46, 58]
√ √ √

DWT-MLEAD (Ch. 5)
√

(
√

)
√ √ √ √

LSTM-AD (Ch. 6)
√

(
√

) (
√

)
√

LSTM-ED [108]
√

(
√

)
√ √

NuPIC [160]
√ √ √ √

SORAD (Ch. 4)
√ √ √ √

TCN-AE (Ch. 7)
√ √ √ √ √

Table 8.1: This table summarizes the suitability of various time series anomaly detection algorithms,
given different time series characteristics. A checkmark (in parentheses) indicates that an algorithm can
(partially) handle time series with the specified characteristic.

Based on the time series characteristics described in Section 2.4, we tried to indicate
in Table 8.1 for all algorithms used in this work, which ones might be suited for which
characteristics. For example, we expect that DL algorithms are generally less well suited
for data sets that are relatively small (less than a few thousand points). Most algorithms
investigated in this work should be applicable to multivariate time series or to time series
with weak non-stationary behavior. Algorithms that can run entirely online, such as SO-
RAD, generally tend to perform better than offline algorithms on time series with strong
non-stationary behavior.
In order to learn long-term correlations, a long temporal memory is required. Algorithms,
such as LSTM-ED or DNN-AE, designed to encode and reconstruct short sub-sequences,
do not scale well for increasing sub-sequence lengths and usually cannot learn long-term
correlations very well. On the other hand, TCN-AE exhibits a much longer memory than
recurrent architectures (e.g., LSTM or GRU) with the same capacity (network size) and
does not suffer from vanishing/exploding gradients. Hence, TCN-AE could be a reasonable
choice if long-term correlations in time series have to be learned. As described before, SO-
RAD, NuPIC, and LSTM-AD will likely not perform well on unpredictable (in the sense of
forecastable) time series since all three approaches rely on single-step or multi-step ahead
prediction.
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8.2 Conclusions

In Sec. 1.1.3, we posed research questions that motivated our work in the following. At this
point, we would like to revisit these questions and highlight the contributions that emerged
in their context.
Q1: Is it possible to successfully train and apply novel unsupervised machine learning
models for anomaly detection and do they advance the state of the art?
A1: Although it is challenging to analyze time series in an unsupervised fashion, especially
when considering the data’s temporal nature, we can answer this question mostly positively.
Overall, we introduced four different anomaly detection algorithms for time series, which
can be used in different contexts and show competitive performance when benchmarked
against other state-of-the-art algorithms: The online SORAD could significantly outper-
form other algorithms [173, 160] on non-stationary time series with short-term anomalies.
Our second online algorithm, DWT-MLEAD, is able to analyze time series on different time
scales and detect short-term and longer-term anomalies. It is better than other algorithms
[173, 160] when applied to benchmarks with anomalies being diverse in their time scales.
LSTM-AD is a DL model with several enhancements that obtains state-of-the-art results on
quasi-periodic time series such as ECG signals or the Mackey-Glass Anomaly Benchmark
(MGAB). TCN-AE is a novel reconstruction-based DL approach that analyzes time series at
different time scales and can learn long-term relationships. For a real-world anomaly detec-
tion task for ECG time series, TCN-AE outperforms other strong (DL) anomaly detection
algorithms [160, 46, 108] with respect to detection accuracy, model size, and computation
time, significantly improving the state of the art. All algorithms presented in this work are
unsupervised and do not require any ground truth labels for the training process. Only for
evaluation purposes, the anomaly labels are partly required, for example, to configure the
anomaly threshold of all algorithms in a way that allows a fair comparison (e.g., by achiev-
ing equal accuracy, EAC). Furthermore, none of the algorithms requires solely normal data
in order to learn the regular behavior of a time series (up to 5% of the data was anomalous
in the examples used in our experiments), demonstrating the algorithms noise resilience.
Contrary to other state-of-the-art algorithms, all of our algorithms are applicable to time
series with two or more dimensions. However, due to the lack of suitable benchmarking
data, we did not experiment with high-dimensional time series.

Q2: Given certain characteristics of the time series data, can we advise which algorithm is
most suited for detecting anomalies?
A2: To answer this research question, we investigated two aspects: (1) What are general
characteristics/properties of time series which are important in the context of anomaly de-
tection and for choosing suitable algorithms? (2) How do existing state-of-the-art algorithms
deal with these properties and can we find better approaches to analyze time series with
different characteristics? Based on the different problems that we studied, we found several
answers to both questions in the individual chapters, which are discussed on a higher level
considering the overall context in Section 8.1.
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In summary, we identified several recurring characteristics appearing in time series. Each
proposed algorithm addresses one or more of these characteristics. However, there is no uni-
versally applicable algorithm. All algorithms have their justification for different problems.
An important decision criterion for the choice of the algorithm is the data size. Deep learning
approaches (TCN-AE, LSTM-AD) tend to be less well suited for small data sets. Another
factor for many problems is to analyze a time series and to detect anomalies across different
frequency scales. The capability to learn long-term dependencies is necessary for many types
of problems and requires that the model has a large temporal receptive field (TCN-AE) or
an efficient temporal memory (LSTM-AD). Online and offline algorithms should be able to
process time series with weak forms of non-stationarity (e.g. baseline wandering, changes
in signal quality) which are ubiquitous in real-world problems. For strong non-stationary
behavior, algorithms with online adaptability (DWT-MLEAD, SORAD) are needed that
are stable on the one side and, on the other side, can learn new concepts in the data. Fi-
nally, the dimension of a time series plays an important role in the choice of the algorithm.
Some algorithms are better suited for multivariate time series than others. Although al-
ready mentioned (and although not directly related to the nature of a time series), we want
to emphasize that the available time series data usually does not permit to train super-
vised learning models in practice, due to the sparse amount of labeled data. Hence, all our
algorithms are trained in an unsupervised fashion.

Q3: How can online learning methods be successfully used for anomaly detection in time
series or data streams?

A3: We investigated this research question mainly in Chapter 4 and Chapter 5. Note that
while all our models can be run online on new data after training, only SORAD and DWT-
MLEAD are online adaptable; hence, we do not have to train them offline. Instead, they
only require a very short transient phase to be ready for use, and they can continually adapt
to new concepts in the data. SORAD uses the recursive least squares (RLS) algorithm to
learn its prediction model and estimates the mean and (co-) variance of the prediction errors
online. Additionally, it is possible to add a certain amount of forgetting to the RLS model
and to the estimation of the error distribution, which enables the online adaptability of the
algorithm. Although the regression model is linear, it can be augmented with non-linear
features, such as polynomials or radial basis functions (RBFs). DWT-MLEAD algorithm
can compute the (causal and decimating) discrete wavelet transform entirely online. For
individual frequency scales of the current DWT, the algorithm estimates a mean vector
and covariance matrix in an online fashion. It is also possible to add forgetting to DWT-
MLEAD so that the algorithm can adapt itself in non-stationary environments. The online
adaptability of SORAD and DWT-MLEAD appears to be beneficial for time series with
concept changes or drifts, as our experiments showed. Furthermore, both algorithms did
not show any signs of numerical instabilities or other diverging behavior.

LSTM-AD and TCN-AE are not online-adaptable in the sense that they continue ad-
justing their weights after the (offline) training. However, both algorithms are capable of
dealing with non-stationary artifacts such as baseline wandering.
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So far it is an open question to us whether DL models can be trained online. Today, most
online learning algorithms are designed to learn shallow models with convex optimization
(e.g., linear least squares) techniques. In this work we did not investigate to which extent
DL models, with highly non-convex objective functions, can be trained in an online fashion.
Hence, this research question cannot yet be answered conclusively and has much potential
for future investigations.

8.3 Future Work

Although we explored some challenges mentioned in the introduction and present novel
approaches to time series anomaly detection, many challenges beyond this work remain
that research could address in future work. Apart from the more detailed discussions in
the previous chapters on possible further work on individual problems and improvements
to particular algorithms, we see some more general points which are worth investigating in
the future:

Need for Better Benchmarks Although several benchmarks for time series anomaly
detection are publicly available and we could also design a challenging synthetic bench-
mark based on Mackey-Glass time series and construct a complex benchmark based on
ECG data, we have the impression that many of the current data sets do not adequately
reflect the reality that will prevail in the future. It will become increasingly difficult to
assess algorithms’ performance regarding their practicability for real-world problems based
on the current benchmarks. Many currently popular benchmarks contain only relatively
short (several thousand points) and only one-dimensional time series. However, applica-
tions today collect thousands of high-dimensional data points in a short time. Especially
for benchmarking DL approaches, many current benchmarks are insufficient due to their
somewhat limited size. Other issues are triviality (i.e., simple thresholding methods can de-
tect some anomalies), insertion of unrealistic synthetic anomalies into normal data, or the
translation of traditional classification problems into anomaly detection problems by sim-
ply re-labeling minority classes as anomalies. Another common problem is that not always
guidelines exist on how to measure an algorithm’s performance. For the same benchmark,
researchers assess algorithms’ performance in very different ways and report performance
metrics that are incomparable to other works. For these reasons, we believe there is a need
for better benchmarks in time series anomaly detection, which are relevant to practice and
widely accepted among the research community and allow a fair and thorough evaluation of
different approaches. These new benchmarks also require standardized rule sets that clearly
state how to assess the performance of an algorithm.

Interpretability Another issue that will likely get more relevant in the context of (time
series) anomaly detection is the interpretability of models. Interpretability is concerned with
the problem of getting some explanation or understanding for the decisions made by our
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models. In the context of anomaly detection, interpretability is linked to the question of
whether an algorithm can also identify the underlying cause of a detected anomaly. Usually,
an anomaly is associated with a problem in the monitored system or process. Hence, in
many real-world applications, it is not sufficient to solely detect anomalous behavior. To fix
the problem and possibly prevent further harm, it is also critical to identify the actual
source of the problem and find a way to handle this problem. In some cases, human
experts might be able to analyze the anomalous pattern and recognize the cause. However,
especially in high-dimensional & high-frequency time series, where anomalies might occur
only in a small subset of the high-dimensional space, this becomes increasingly difficult.
In other cases, it might be of interest to understand an algorithm’s decision to reduce
algorithmic bias (e.g., caused by biased training data) or to justify individual decisions.
While researchers have invested much effort in developing anomaly detection algorithms in
recent years, interpretable approaches have not received as much attention yet. Overall, we
see much potential in this area.

Integrating Expert Feedback All the anomaly detection algorithms presented in this
work and many approaches described in the literature are trained in an unsupervised fash-
ion. The main reason for this is that the available labeled data is sparse, and the few
labeled instances are needed for tuning and validation purposes. Unsurprisingly, many
anomaly detection models have a relatively low performance when initially deployed. That
is, the models produce many false alarms or overlook real anomalous behavior. One idea
to improve the overall prediction quality could be to integrate expert feedback into the
model during operation since human experts (such as machine operators) are commonly
involved in anomaly detection tasks and have to check and acknowledge alarms. With such
a human-in-the-loop (HITL) approach, the model could gradually adapt itself and improve
its predictions. However, one has to keep in mind that also expert feedback will mostly
be sparse and has to be handled efficiently so that the improvement will become apparent
in a reasonable time. Although some work exists on how to incorporate expert feedback
into anomaly detection [32, 138, 136], it is a mostly open research question how such addi-
tional information can be utilized efficiently, apart from simple adjustments of the anomaly
threshold.
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Universitätsverlag Karlsruhe (2017)
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Appendix A

Extended Results for Chapter 7

Table A.1: Summary for the ECG-25 data (mean ± σmean of 10 runs, except for the deterministic
NuPic algorithm). The results shown here are for the sum of TP, FN and FP over all 25 time series. For
each algorithm and time series, the anomaly threshold was tuned on 10 % of the data, as described in
Section 7.4.2.2.

TP FN FP Prec Rec F1 p
Algorithm

NuPIC 354.7± 5.4 366.3± 5.4 2214.5± 35.3 0.140± 0.003 0.492± 0.008 0.217± 0.004 1.948e-18
SORAD 566.6± 3.8 154.4± 3.8 743.2± 15.4 0.438± 0.006 0.786± 0.005 0.561± 0.005 1.948e-18
DNN-AE 551.3± 3.4 169.7± 3.4 672.5± 8.4 0.452± 0.004 0.765± 0.005 0.568± 0.004 1.948e-18
LSTM-ED 578.8± 3.2 142.2± 3.2 652.3± 17.6 0.480± 0.007 0.803± 0.004 0.597± 0.005 1.948e-18
TCN-AE (baseline) 640.4± 1.9 80.6± 1.9 630.9± 24.1 0.518± 0.008 0.888± 0.003 0.650± 0.006 2.480e-18
LSTM-AD 569.3± 1.9 151.7± 1.9 411.8± 8.7 0.585± 0.005 0.790± 0.003 0.671± 0.004 9.517e-18
TCN-AE (final) 691.3± 0.7 29.7± 0.7 352.8± 10.2 0.668± 0.006 0.959± 0.001 0.786± 0.004 –
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Table A.2: F1-scores (mean± σmean) of TCN-AE and the other algorithms (highest values in boldface).
Same as Table 7.9, except that we permit the algorithms to determine an anomaly threshold from only 10%
of the anomaly labels. In all cases in which we fail to reject the null hypothesis at the 5%-confidence level,
we add a gray background to the corresponding field.

NuPIC LSTM-ED DNN-AE LSTM-AD TCN-AE
F1 p F1 p F1 p F1 p F1

1 0.077±0.012 1.94e-18 0.475±0.012 2.07e-18 0.809±0.016 0.00108 0.801±0.017 0.000857 0.831±0.014
2 0.164±0.038 8.63e-15 0.254±0.014 2.37e-10 0.276±0.012 4.85e-10 0.561±0.014 1.0 0.467±0.024
3 0.082±0.016 1.95e-18 0.77 ±0.01 4.6e-09 0.729±0.017 9.57e-08 0.345±0.014 1.95e-18 0.845±0.011
4 0.106±0.035 6.3e-06 0.112±0.018 1.94e-18 0.144±0.018 1.29e-17 0.420±0.015 1.0 0.278±0.031
8 0.294±0.041 1.95e-18 0.861±0.009 8.61e-06 0.538±0.013 7.07e-18 0.789±0.009 1.22e-11 0.903±0.010
9 0.108±0.027 2.01e-18 0.471±0.009 6.23e-13 0.544±0.013 0.0103 0.397±0.021 6.39e-11 0.573±0.011
10 0.509±0.064 3.79e-15 0.691±0.012 5.3e-06 0.644±0.024 9.3e-13 0.796±0.011 0.955 0.785±0.014
11 0.043±0.018 1.17e-18 0.515±0.034 0.0807 0.285±0.028 7.4e-15 0.640±0.039 0.967 0.556±0.023
12 0.09 ±0.06 1.8e-18 0.351±0.019 1.27e-15 0.343±0.027 1.25e-14 0.578±0.028 0.381 0.593±0.022
13 0.010±0.007 1.33e-18 0.718±0.022 4.99e-08 0.588±0.028 2.25e-15 0.624±0.029 9.26e-14 0.817±0.022
14 0.372±0.080 2e-18 0.793±0.015 4.31e-08 0.614±0.011 9.52e-18 0.684±0.019 1.42e-15 0.869±0.010
15 0.006±0.003 1.78e-18 0.574±0.018 4.46e-10 0.702±0.023 0.791 0.781±0.008 1.0 0.692±0.015
16 0.264±0.019 1.93e-18 0.816±0.010 1.1e-06 0.612±0.008 3.78e-17 0.873±0.010 0.00805 0.883±0.013
17 0.001±0.001 1.97e-19 0.097±0.029 4.66e-16 0.10 ±0.03 9.66e-16 0.10 ±0.03 9.66e-16 0.791±0.029
18 0.251±0.004 1.95e-18 0.482±0.007 1.95e-18 0.660±0.017 3.06e-18 0.837±0.006 4.07e-14 0.917±0.005
20 0.007±0.007 3.74e-18 0.368±0.032 0.000163 0.288±0.032 1.1e-07 0.329±0.036 0.00217 0.436±0.032
21 0.004±0.004 1.47e-18 0.361±0.033 2.1e-11 0.230±0.021 2.88e-12 0.391±0.021 0.000737 0.558±0.038
22 0.337±0.067 1.75e-17 0.500±0.024 1.1e-07 0.538±0.026 1.81e-05 0.621±0.022 0.212 0.629±0.018
23 0.281±0.032 1.94e-18 0.504±0.022 2.74e-17 0.769±0.017 0.000898 0.740±0.016 2.52e-05 0.830±0.012
26 0.135±0.023 1.95e-18 0.561±0.024 7.71e-11 0.460±0.019 5.74e-18 0.381±0.013 5.01e-14 0.665±0.015
28 0.426±0.038 1.94e-18 0.704±0.019 2.45e-06 0.723±0.020 0.00418 0.775±0.012 0.00466 0.801±0.010
33 0.0 1.34e-05 0.092±0.014 1.0 0.062±0.007 0.999 0.002±0.001 1.34e-05 0.033±0.007
39 0.150±0.019 1.95e-18 0.719±0.010 1.77e-17 0.781±0.019 2.93e-06 0.823±0.011 6.18e-08 0.898±0.007
42 0.468±0.021 1.95e-18 0.738±0.014 3.59e-13 0.736±0.023 6.34e-07 0.714±0.012 6.9e-16 0.844±0.008
48 0.008±0.004 1.8e-18 0.544±0.024 1.39e-08 0.498±0.032 2.97e-05 0.703±0.024 0.925 0.667±0.022
Σ 0.217±0.012 1.95e-18 0.597±0.005 1.95e-18 0.568±0.004 1.95e-18 0.671±0.004 9.52e-18 0.786±0.004
mean 0.168±0.009 1.95e-18 0.523±0.004 1.95e-18 0.507±0.004 1.95e-18 0.588±0.003 3.78e-18 0.686±0.005
median 0.120±0.015 1.95e-18 0.544±0.006 1.95e-18 0.531±0.008 1.95e-18 0.650±0.007 1.22e-17 0.747±0.007

Table A.3: Impact of the individual TCN-AE components for the ECG-25 Data (mean ± σmean of 10
runs). The results shown here are for the sum of TP, FN and FP over all 25 time series. For each algorithm
variant and time series the anomaly threshold was tuned on 10 different segments containing only 10 % of
the data.

TP FN FP Prec Rec F1 p
Algorithm

noAnomScoreCorr 588.9± 2.6 132.1± 2.6 527.7± 14.0 0.536± 0.007 0.817± 0.004 0.645± 0.006 2.008078e-18
baseline 640.4± 1.9 80.6± 1.9 630.9± 24.1 0.518± 0.008 0.888± 0.003 0.650± 0.006 2.480521e-18
noSkip 655.6± 1.8 65.4± 1.8 537.3± 19.2 0.563± 0.008 0.909± 0.002 0.691± 0.006 8.453158e-18
noLatent 651.9± 1.8 69.1± 1.8 522.8± 19.5 0.570± 0.009 0.904± 0.002 0.695± 0.007 5.052100e-17
noRecon 678.0± 1.3 43.0± 1.3 414.2± 12.7 0.628± 0.007 0.940± 0.002 0.751± 0.005 1.226155e-10
noInvDil 680.2± 1.2 40.8± 1.2 417.1± 13.7 0.630± 0.008 0.943± 0.002 0.752± 0.005 8.187313e-13
noMapReduc 687.1± 0.8 33.9± 0.8 381.2± 11.1 0.650± 0.007 0.953± 0.001 0.771± 0.005 2.041980e-04
final 691.3± 0.7 29.7± 0.7 352.8± 10.2 0.668± 0.006 0.959± 0.001 0.786± 0.004 0.000000e+00
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Figure A.1: Results when tuning various algorithmic variants of TCN-AE on different subsets of the
ECG-25 data (mean and standard deviation of 10 runs).
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Figure A.2: Results when tuning various algorithms on different subsets of the ECG-25 data (mean and
standard deviation of 10 runs).
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Figure A.3: Histogram of the reconstruction error (in blue) for one dimension of the error matrix E′.
We found that the reconstruction errors are bell-shaped (elliptic in higher dimensions). Although the
reconstruction errors are not Gaussian, they closely follow a t-distribution with a mean µ̂, a standard
deviation σ̂, and ν degrees of freedom, as indicated by the estimated distribution (red line).
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Appendix B

Derivations

B.1 Batch Incremental Weighted Least Squares Esti-

mator for multivariate Regression Tasks

In practice, the well-known recursive least squares (RLS) filter is often used to learn a linear
function in a fully online setting. The RLS filter uses exponentially decaying weights in
order to be able to adapt to new concepts. In this section, we derive a similar, however,
slightly more complex, incremental version of the weighted least squares estimator which
can be used for the SORAD algorithm introduced in Chapter 4. Specifically, we will derive
a multivariate variant for batches (having a batch size µ ≥ 1) with exponentially decaying
weights. This is beneficial in setups which do not have to be fully-online (batch processing
usually allows to reduce the computation time if parallelization is supported) or in situations
where the amount of data is too large to be processed in a single batch. For example, we
use this approach to speed up SORAD for the experiments in Chapter 7.

We start with the original closed-form formulation of the weighted least squares estima-
tor:

θ =
(
XTWX + βI

)−1
XTWy. (B.1)

where X is a matrix containing n inputs of length k as row-vectors, W is a diagonal
weight matrix, carrying a weight for each of the n observations, y is a n-dimensional target
vector with one value for each input vector (as we will see later, we can easily extend our
explications to multi-dimensional outputs, where we would instead use a matrix Y). The
term βI (regularization factor and identity matrix) is the so-called regularizer, which is used
to prevent overfitting.

Since we have n observations we can also slightly modify our above equation, to later
indicate the current iteration:

θn =
( =An︷ ︸︸ ︷
XT

nWn︸ ︷︷ ︸
=Gn

Xn + βI
)−1

=bn︷ ︸︸ ︷
XT

nWn︸ ︷︷ ︸
=Gn

yn =
( =An︷ ︸︸ ︷
GnXn + βI

)−1

=bn︷ ︸︸ ︷
Gnyn = A−1

n bn, (B.2)

θn ∈ Rk, Xn ∈ Rn×k, Wn ∈ Rn×n, I ∈ Rk×k, β ∈ R, yn ∈ Rn
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B.1. BATCH INCREMENTAL WEIGHTED LEAST SQUARES ESTIMATOR FOR
MULTIVARIATE REGRESSION TASKS

Gn ∈ Rk×n, An ∈ Rk×k, bn ∈ Rk.

If now a new batch of µ observation pairs Xµ ∈ Rµ×k, yµ ∈ Rµ arrives, some of the above
matrices and vectors change as follows (the others remain unchanged):

Xn+µ =

[
Xn

Xµ

]
, Wn+µ =

[
λWn 0
0T Wµ

]
, yn+µ =

[
yn

yµ

]
, (B.3)

where Xn+µ ∈ R(n+µ)×k, Wn+µ ∈ R(n+µ)×(n+µ), λ ∈ R, Wµ ∈ Rµ×µ, yn+µ ∈ Rn+µ. λ is a
constant with which we can retroactively modify the old weights Wn. Now let us insert the
definitions in Eq. (B.3) into Eq. (B.2):

θn+µ =

( =An+µ︷ ︸︸ ︷[
Xn

Xµ

]T [
λWn 0
0T Wµ

]
︸ ︷︷ ︸

=Gn+µ

[
Xn

Xµ

]
+ βI

)−1

=bn+µ︷ ︸︸ ︷[
Xn

Xµ

]T [
λWn 0
0T Wµ

]
︸ ︷︷ ︸

=Gn+µ

[
yn

yµ

]

=

( =An+µ︷ ︸︸ ︷
Gn+µ

[
Xn

Xµ

]
+ βI

)−1

=bn+µ︷ ︸︸ ︷
Gn+µ

[
yn

yµ

]
= A−1

n+µbn+µ, (B.4)

where we identify:

Gn+µ =

[
Xn

Xµ

]T [
λWn 0
0T Wµ

]
∈ Rk×(n+µ), (B.5)

An+µ = Gn+µ

[
Xn

Xµ

]
+ βI ∈ Rk×k, (B.6)

bn+µ = Gn+µ

[
yn

yµ

]
∈ Rk. (B.7)

Now let us expand equation (B.5):

Gn+µ =


n×k︷︸︸︷
Xn

Xµ︸︷︷︸
µ×k


T 

n×n︷ ︸︸ ︷
λWn

n×µ︷︸︸︷
0

0T︸︷︷︸
µ×n

Wµ︸︷︷︸
µ×µ

 =

[
k×n︷︸︸︷
XT

n

k×µ︷︸︸︷
XT

µ

]
n×n︷ ︸︸ ︷
λWn

n×µ︷︸︸︷
0

0T︸︷︷︸
µ×n

Wµ︸︷︷︸
µ×µ


=
[
λXT

nWn + XT
µ0

T XT
n0 + XT

µWµ

]
=
[
λXT

nWn XT
µWµ

]
=

[
λGn︸︷︷︸
k×n

XT
µWµ︸ ︷︷ ︸
k×µ

]
∈ Rk×(n+µ).
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In the next step, let us evaluate An+1 from Eq. (B.6):

An+µ = Gn+µ

[
Xn

Xµ

]
+ βI =

[
λGn︸︷︷︸
k×n

XT
µWµ︸ ︷︷ ︸
k×µ

]
n×k︷︸︸︷
Xn

Xµ︸︷︷︸
µ×k

+ βI (B.8)

= λGnXn + XT
µWµXµ + βI = λGnXn + βI︸ ︷︷ ︸

=An

+XT
µWµXµ (B.9)

= λ An︸︷︷︸
k×k

+XT
µWµXµ︸ ︷︷ ︸
k×k

, with A0 = βI, λ0 = 1. (B.10)

Since we have to compute the inverse of An+µ, it might be helpful to find an incremental
formulation, since the inverse is costly to compute. In this case, the Woodbury matrix
identity [179] helps:

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1 + U)−1VA−1. (B.11)

This gives us:

A−1
n+µ = (λAn)−1 −

=∆µ︷ ︸︸ ︷
(λAn)−1XT

µ

(
W−1

µ + Xµ(λAn)−1XT
µ

)−1
Xµ(λAn)−1

= (λAn)−1 −∆µXµ(λAn)−1, (B.12)

with:

∆µ = (λAn)−1XT
µ

(
W−1

µ + Xµ(λAn)−1XT
µ

)−1 ∈ Rk×µ (B.13)

= A−1
n XT

µ

(
λW−1

µ + XµA
−1
n XT

µ

)−1
(B.14)

Then, we expand Eq. (B.7):

bn+µ = Gn+µ

[
yn

yµ

]
=

[
λGn︸︷︷︸
k×n

WµXµ︸ ︷︷ ︸
k×1

]
n×1︷︸︸︷
yn

yµ︸︷︷︸
µ×1

 (B.15)

= λGnyn + XT
µWµyµ = λ bn︸︷︷︸

k×1

+XT
µWµyµ︸ ︷︷ ︸
k×1

(B.16)

Now let us insert the results of (B.12) and (B.16) into Eq. (B.4) and then simplify the
expression:
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θn+µ = A−1
n+1bn+1 (B.17)

=
[
(λAn)−1 −∆µXµ(λAn)−1

][
λbn + XT

µWµyµ

]
(B.18)

= A−1
n bn︸ ︷︷ ︸
θn

+(λAn)−1XT
µWµyµ −∆µXµA

−1
n bn︸ ︷︷ ︸
θn

−∆µXµ(λAn)−1XT
µWµyµ (B.19)

= θn +
[
(λAn)−1 −∆µXµ(λAn)−1

]
XT

µWµyµ −∆µXµθn (B.20)

Although we did a few rearrangements, it seems like Eq. (B.20) cannot be simplified
further. However, we can find a more compact solution if we look closer at Eq. (B.13):

∆µ = (λAn)−1XT
µ

(
W−1

µ + Xµ(λAn)−1XT
µ

)−1
(B.21)

∆µ

(
W−1

µ + Xµ(λAn)−1XT
µ

)
= (λAn)−1XT

µ (B.22)

∆µW
−1
µ + ∆µXµ(λAn)−1XT

µ = (λAn)−1XT
µ (B.23)

∆µW
−1
µ =

[
(λAn)−1 −∆µXµ(λAn)−1

]
XT

µ (B.24)

Interestingly, we can find the RHS of Eq. (B.24) also in Eq. (B.20). If we use above relation,
we can therefore simplify (B.20) significantly:

θn+µ = θn + ∆µW
−1
µ Wµyµ −∆µXµθn (B.25)

= θn + ∆µyµ −∆µXµθn (B.26)

= θn + ∆µ

(
yµ −Xµθn

)
(B.27)

= θn + ∆µe, (B.28)

where e is the prediction error:

eµ = yµ −Xµθn. (B.29)

We can summarize our findings for the univariate case with arbritrary weight matrix Wµ as
follows:

eµ = yµ −Xµθn (B.30)

∆µ = A−1
n XT

µ

(
λW−1

µ + XµA
−1
n XT

µ

)−1
(B.31)

θn+µ = θn + ∆µeµ (B.32)

A−1
n+µ = (λAn)−1 −∆µXµ(λAn)−1 (B.33)
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where

λ ∈ R, eµ,yµ,θn,θn+µ ∈ Rµ, Xµ ∈ Rµ×k, ∆µ ∈ Rk×µ, An,An+µ ∈ Rk×k, Wµ ∈ Rn×n,

A0 = βI, λ0 = 1, θ0 = 0.

Multivariate Batch Recursive Least Squares Algorithm Extending the above equa-
tions to the multivariate case with m dimensions is straightforward. We simply have to
replace some vectors with matrices. Furthermore, for a simple setup with exponentially
decaying weights we set λ ∈ [0, 1] and Wµ = I. Hence, the final multivariate batch RLS
algorithm can be described as follows:

Eµ = Yµ −XµΘn (B.34)

∆µ = A−1
n XT

µ

(
λI + XµA

−1
n XT

µ

)−1
(B.35)

Θn+µ = Θn + ∆µEµ (B.36)

A−1
n+µ =

1

λ
A−1

n −
1

λ
∆µXµA

−1
n (B.37)

where

λ ∈ [0, 1], Eµ,Yµ,Θn,Θn+µ ∈ Rµ×m, Xµ ∈ Rµ×k, ∆µ ∈ Rk×µ, A−1
n ,A−1

n+µ ∈ Rk×k,

A−1
0 =

λ

β
I, Θ0 = 0.

B.2 Online Estimation of the Sample Mean and Co-

variance

This section derives several formulas to incrementally compute the weighted mean and the
weighted covariance matrix for a multivariate data set. This property is especially useful in
online settings, where an algorithm constantly has to update its estimates and in situations
where one expects the mean and the covariance matrix to drift over time. We present a
fully online procedure and a procedure that can process mini-batches. The derived formulas
are used in Chapter 5 for the DWT-MLEAD algorithm and in Chapter 7, for the SORAD
algorithm, which was introduced earlier in Chapter 4.

B.2.1 The Weighted Mean and Covariance Matrix

In some cases, one might want to compute the weighted arithmetic mean and a weighted
sample covariance (matrix) where particular sample points should contribute more to the
final mean (covariances) than others. For example, it could be reasonable to give larger
weight to more recent data points if the statistics (e.g., mean) of the underlying distribution
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change over time (concept drifts). In such cases, we would want the estimator to track the
data generating distribution changes and forget about older knowledge. But also other
scenarios are possible, in which a weighting of the data points might be useful. In this
section, we define the weighted arithmetic mean and weighted sample covariance, explore
a few properties related to these weighted statistics, and then design an estimator for the
sample mean and covariance exhibiting some forgetting.

In general, the weighted arithmetic mean is defined quite straightforward as:

x̄n =

∑n
i=1w

′
ixi∑n

i=1w
′
i

, (B.38)

where xi is the i-th data point (vector) and w′
i is the (unnormalized) weight assigned to the

corresponding data point. If the weights are normalized to sum 1, then we get:

x̄n =
n∑

i=1

wixi, (B.39)

where the normalized weights are defined as:

wi =
w′

i

Wn

=
w′

i∑n
i=1w

′
i

, (B.40)

with the normalization factor

Wn =
n∑

i=1

w′
i.

The special case with wi = 1
n

results in the formulation of the conventional mean. According
to [137], the biased weighted covariance matrix can be written similarly as:

Σ̄ =
M̄

(n)

Wn

=

∑n
i=1w

′
i(xi − x̄)(xi − x̄)T∑n

i=1 w
′
i

, (B.41)

where M̄
(n)

is the so called weighted scatter matrix, with

M̄
(n)

=
n∑

i=1

w′
i(xi − x̄)(xi − x̄)T.

If the weights are frequency weights (each weight represents the count of a data point), then
an unbiased estimator is found to be [137]:

Σ̄ =
M̄

(n)

Wn − 1
. (B.42)
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Otherwise, the following unbiased estimator can be used [137]:

Σ̄ =
M̄

(n)

Wn −W
(2)
n /Wn

, (B.43)

where

W (2)
n =

n∑
i=1

(w′
i)
2. (B.44)

B.2.1.1 Incremental (Batch) Estimation of the Weighted Mean and Covariance

It might become necessary to estimate the mean and covariance matrix of a distribution
incrementally in practice. This could be the case if one operates on streaming data or has
to process large amounts of data, which cannot be handled in one pass. In the general case,
we want to handle batch sizes of µ ∈ N+. For a fully online algorithm, we have the extreme
case µ = 1. If a new batch of size µ arrives, we have update our old estimates x̄n−µ and
Σ̄n−µ. For this purpose we have to process the new examples from k = n − µ + 1 until n.
We first note a recursive update rule for x̄n:

x̄n =

Wn−µx̄n−µ +
n∑

i=k

w′
ixi

Wn

(B.45)

=

(
Wn −

n∑
i=k

w′
i

)
x̄n−µ +

n∑
i=k

w′
ixi

Wn

= x̄n−µ +

−
n∑

i=k

w′
ix̄n−µ +

n∑
i=k

w′
ixi

Wn

= x̄n−µ +

n∑
i=k

w′
i(xi − x̄n−µ)

Wn

,

= x̄n−µ +
n∑

i=k

w′
i

Wn

∆i (B.46)

with

k = n− µ + 1 (B.47)

∆i = xi − x̄n−µ (B.48)
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Then, we derive an batch update rule for the estimator for the weighted covariance matrix
Σ̄n. We start with the weighted scatter matrix:

M̄
(n)

=
n∑

i=1

w′
i(xi − x̄n)(xi − x̄n)T

=
n∑

i=1

w′
i

[
xix

T
i − xix̄

T
n − x̄nx

T
i + x̄nx̄

T
n

]
=

n∑
i=1

w′
i

[
xix

T
i − 2xix̄

T
n + x̄nx̄

T
n

]
=

n∑
i=1

w′
ixix

T
i − 2

(
n∑

i=1

w′
ixi

)
x̄T
n +

n∑
i=1

w′
ix̄nx̄

T
n

=
n∑

i=1

w′
ixix

T
i − 2Wnx̄nx̄

T
n + Wnx̄nx̄

T
n

=
n∑

i=1

w′
ixix

T
i −Wnx̄nx̄

T
n

The increment of the weighted scatter matrix from index k = n−µ+1 to n can be computed
as follows:

∆M̄
(n)

= M̄
(n) − M̄

(n−µ)

=
n∑

i=1

w′
ixix

T
i −Wnx̄nx̄

T
n −

n−µ∑
i=1

w′
ixix

T
i + Wn−µx̄n−µx̄

T
n−µ

=
n∑

i=k

w′
ixix

T
i −Wnx̄nx̄

T
n + Wn−µx̄n−µx̄

T
n−µ (B.49)

With the already known expression from Eq. (B.45) and with a rearranged formulation of
Eq. (B.45)

x̄n−µ =

Wnx̄n −
n∑

i=k

w′
ixi

Wn−µ

(B.50)

we can start simplifying Eq. (B.49). We insert Eq. (B.45) and Eq. (B.50) into Eq. (B.49):

∆M̄
(n)

=
n∑

i=k

w′
ixix

T
i −Wn

Wn−µx̄n−µ +
n∑

i=k

w′
ixi

Wn

x̄T
n + Wn−µx̄n−µ

(Wnx̄n −
n∑

i=k

w′
ixi

Wn−µ

)T
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=
n∑

i=k

w′
ixix

T
i −

(
n∑

i=k

w′
ixi

)
x̄T
n −Wn−µx̄n−µx̄

T
n + Wnx̄n−µx̄

T
n − x̄n−µ

(
n∑

i=k

w′
ixi

)T

=
n∑

i=k

w′
ixix

T
i −

n∑
i=k

w′
ixix̄

T
n +

(
Wn −Wn−µ

)
x̄n−µx̄

T
n − x̄n−µ

n∑
i=k

w′
ix

T
i

=
n∑

i=k

w′
ixix

T
i −

n∑
i=k

w′
ixix̄

T
n +

(
n∑

i=k

w′
i

)
x̄n−µx̄

T
n − x̄n−µ

n∑
i=k

w′
ix

T
i

=
n∑

i=k

(
w′

ixix
T
i − w′

ixix̄
T
n + w′

ix̄n−µx̄
T
n − w′

ix̄n−µx
T
i

)

=
n∑

i=k

(
w′

ixi

(
xT
i − x̄T

n

)
− w′

ix̄n−µ

(
xT
i − x̄T

n

))

=
n∑

i=k

w′
i

(
xi − x̄n−µ

)(
xi − x̄n

)T
=

n∑
i=k

w′
i∆i

(
xi − x̄n

)T
(B.51)

In summary, with equations (B.40), (B.44), (B.48), (B.46), (B.51), and (B.41) we can
update our estimates for a new batch (samples from k = n− µ + 1 to n) with:

Wn = Wn−µ +
n∑

i=k

w′
i (B.52)

W (2)
n = W

(2)
n−µ +

n∑
i=k

(w′
i)
2 (B.53)

∆i = xi − x̄n−µ (B.54)

x̄n = x̄n−µ +
n∑

i=k

w′
i

Wn

∆i (B.55)

M̄
(n)

= M̄
(n−µ)

+
n∑

i=k

w′
i∆i

(
xi − x̄n

)T
(B.56)

Σ̄n =
M̄

(n)

Wn

. (B.57)

Note that Eq. (B.57) is a biased estimate of the covariance matrix. For an unbiased estimate
one can use either Eq. (B.42) or Eq. (B.43). If all weights are set to w′

i = 1, we obtain the
update rules for the unweighted case.
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B.2.2 Incremental Estimation with Exponentially Decaying
Weights

If we use constant batch sizes µ and also keep the weights w′
i among a batch constant, an

useful incremental algorithm can be retrieved for a particular set of weights, where each
weight is

w′
i = λ⌊n−i

µ
⌋ = λM−j,

where λ ∈ (0, 1] is the decay rate, M = n/µ (µ | n) represents the number of batches for
n examples, and j = ⌈i/µ⌉ is the index of the batch for the i-th example. With such a
weighting, each example in the most recent batch will be weighted with w′

k = · · · = w′
n−1 =

w′
n = 1, the penultimate batch will have the weights w′

n−2µ+1 = · · · = w′
n−µ−1 = w′

n−µ = λ
and so forth. Ultimately, the older batches will fade away exponentially, for λ < 1. The
advantage of this approach is that we can usually prevent numerical overflows in Wn and

the weighted scatter matrix M̄
(n)

and that we can adapt our estimates to new concepts in
non-stationary environments.

The normalization factor Wn can be computed with:

Wn =
n∑

i=1

w′
i =

M∑
j=1

µλM−j = µ
1− λM

1− λ
.

Note that the weightings w′
n−µ, w

′
n−µ−1, . . . , w

′
1 of all previous examples xn−µ,xn−µ−1, . . . ,x1,

as well as the normalization factor Wn, have to be adjusted if a new example xn arrives. In
this case, each weight {w′

i | i ≤ n − µ} has to be multiplied with λ and the weights of the
new examples are set to w′

k = · · · = w′
n = 1. How does this change the estimation of the

mean and the covariance matrix? Typically, if all weights are changed, one would have to
re-compute both statistics from scratch. However, we can show that in this particular case,
this is not necessary, as described in the following explications: First let us find an update
rule for the normalization factor Wn. We can see that Wn−µ is given by:

Wn−µ = µ
M−1∑
j=1

λM−1−j. (B.58)

Then we re-write Wn:

Wn = µ

M∑
j=1

λM−j

= µ
M−1∑
j=1

λM−j + µλ0 = λ · µ
M−1∑
j=1

λM−1−j + µ

162



= λ ·Wn−µ + µ (B.59)

Accordingly, for W
(2)
n we obtain:

W (2)
n = λ2 ·W (2)

n−µ + µ.

Then, we find an recursive formulation of the estimated mean x̄n. According to Eq. (B.38),
we find:

x̄n =

∑M
j=1 λ

M−j
∑nj

i=kj
xi

µ
∑M

j=1 λ
M−j

=

∑M
j=1 λ

M−jΣj

Wn

, (B.60)

where

nj = jµ , kj = nj − µ + 1 = µ(j − 1) + 1,

Σj =

nj∑
i=kj

xi.

Then, with

x̄n−µ =

∑M−1
j=1 λM−1−jΣj

Wn−µ

, and Wn−µ =
Wn − µ

λ
,

we can obtain a recursive formulation of Eq. (B.60):

x̄n =

∑M
j=1 λ

M−jΣj

Wn

=

∑M−1
j=1 λM−jΣj + λ0Σj

Wn

=
λ
∑M−1

j=1 λM−1−jΣj

Wn

+
ΣM

Wn

= λ
Wn − µ

λ

1

Wn

x̄n−µ +
ΣM

Wn

= x̄n−µ −
µx̄n−µ

Wn

+
ΣM

Wn

= x̄n−µ +

∑n
i=k xi −

∑n
i=k x̄n−µ

Wn

= x̄n−µ +

∑n
i=k

(
xi − x̄n−µ

)
Wn

= x̄n−µ +

∑n
i=k ∆i

Wn

(B.61)
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Finally, we only need a to find a recursive form for the weighted scatter matrix M̄
(n)

. By
expanding the recursion in (B.56) we get (with k = n− µ + 1):

M̄
(n)

=
M∑
j=1

λM−j

nj∑
i=kj

∆i

(
xi − x̄n

)T
, nj = jµ , kj = µ(j − 1) + 1

=
M−1∑
j=1

λM−j

nj∑
i=kj

∆i

(
xi − x̄n

)T
+ λ0

n∑
i=k

∆i

(
xi − x̄n

)T
= λ

M−1∑
j=1

λM−1−j

nj∑
i=kj

∆i

(
xi − x̄n

)T
+

n∑
i=k

∆i

(
xi − x̄n

)T
= λM̄

(n−µ)
+

n∑
i=k

∆i

(
xi − x̄n

)T
, (B.62)

since

M̄
(n−µ)

=
M−1∑
j=1

λM−1−j

nj∑
i=kj

∆i

(
xi − x̄n

)T
.

B.2.2.1 Batch and Online Estimation of the Inverse Covariance Matrix

In practice, it is often required to estimate the inverse of the covariance matrix of a sample,
for example, when a Mahalanobis distance between points has to be computed. In a fully
online setting it can be quite expensive to compute the inverse of the covariance matrix
again for each new point arriving, since the complexity of the inverse of a m × m matrix
is about O(m3) (slightly less in some highly optimized algorithms). As we will see in the
following, it is not necessary to estimate the covariance matrix, if only its inverse is needed
and furthermore, the inverse can be adapted incrementally in an efficient manner. The
results are shown for the general case with a weighted exponentially decaying estimator.

For a batch-setup (µ > 1), one can use the Woodbury matrix identity [179] to find a
recursive definition of the inverse of the scatter matrix M̄ and covariance matrix Σ̄. The
Woodbury matrix identity is given as:

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1 + U)−1VA−1. (B.63)

First, we write Eq. (B.62) in vectorized form (to be consistent in the notation later, we
move the superscript in M̄ to the index):

M̄n = λM̄n−µ +
n∑

i=k

∆i

(
xi − x̄n

)T
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= λM̄n−µ + DT
nIX n, (B.64)

where k = n− µ + 1 and

Dn =
(
∆k ∆k+1 · · · ∆n

)T
X n =

(
xk − x̄n xk+1 − x̄n · · · xn − x̄n

)T
.

Then we identify:

A = λM̄n−µ, U = DT
n , C = I, V = X n,

and find:

M̄
−1
n =

1

λ
M̄

−1
n−µ −

1

λ2
M̄

−1
n−µD

T
n

(
I−1 +

1

λ
X nM̄

−1
n−µD

T
n

)−1

X nM̄
−1
n−µ

=
1

λ
M̄

−1
n−µ −

1

λ
M̄

−1
n−µD

T
n

(
λI + X nM̄

−1
n−µD

T
n

)−1

X nM̄
−1
n−µ.

Since we also have to compute an inverse here, it only makes sense to use the Woodbury
matrix identity if the batch size µ is significantly smaller than the dimension of the examples
xi. Similarly, in order to compute the inverse fully online (µ = 1), we simply apply the
Sherman-Morrison formula [150] – a special case of the Woodbury matrix identity [179] –

to incrementally update M̄
−1
n . The formula is given by

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (B.65)

If we look at Eq. (B.62), we can identify:

A = λM̄
(n−1)

, u = ∆n, v = xn − x̄n

This then leads to:

M̄
−1
n =

1

λ
M̄

−1
n−1 −

1
λ
M̄

−1
n−1∆n(xn − x̄n)TM̄

−1
n−1

λ + (xn − x̄n)TM̄
−1
n−1∆n

. (B.66)

With Eq. (B.83), we can finally compute the inverse of the covariance matrix with

Σ̄
−1
n = WnM̄

−1
n . (B.67)

In summary, we can write down the following rules for the recursive (iterative) estimation
of the mean vector and the covariance matrix, which should be processed in the given order:

Wn = λ ·Wn−µ + µ (B.68)
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W (2)
n = λ2 ·W (2)

n−µ + µ (B.69)

∆i = xi − x̄n−µ (B.70)

x̄n = x̄n−µ +

∑n
i=k ∆i

Wn

(B.71)

Dn =
(
∆k ∆k+1 · · · ∆n

)T
(B.72)

X n =
(
xk − x̄n xk+1 − x̄n · · · xn − x̄n

)T
(B.73)

M̄n = λM̄n−µ + DT
nX n (B.74)

M̄
−1
n =

1

λ
M̄

−1
n−µ −

1

λ
M̄

−1
n−µD

T
n

(
λI + X nM̄

−1
n−µD

T
n

)−1

X nM̄
−1
n−µ (B.75)

Σ̄n =
M̄n

Wn

, Σ̄
−1
n = WnM̄

−1
n . (B.76)

where µ is the batch size and k = n− µ + 1 is the first index in the new batch. Again, for
an unbiased estimate of Σ̄ one should either use Eq. (B.42) or Eq. (B.43).

For a fully online estimation (batch size µ = 1, k = n), above update rules simplify to:

Wn = λWn−1 + 1 (B.77)

W (2)
n = λ2Wn−1 + 1 (B.78)

∆n = xn − x̄n−1 (B.79)

x̄n = x̄n−1 +
∆n

Wn

(B.80)

M̄n = λM̄n−1 + ∆n(xn − x̄n)T (B.81)

M̄
−1
n =

1

λ
M̄

−1
n−1 −

1
λ
M̄

−1
n−1∆n(xn − x̄n)TM̄

−1
n−1

λ + (xn − x̄n)TM̄
−1
n−1∆n

(B.82)

Σ̄n =
1

Wn

M̄n, Σ̄
−1
n = WnM̄

−1
n . (B.83)

In Sec. B.2.4, we show that the memory of the fully online estimator is approximately:

nmem ≈
1 + λ

1− λ
.

B.2.3 The Covariance of Weighted Sample Means

In this section, we will derive a formula to compute the covariance of the weighted sample
means. This formula will be important in the following section to roughly approximate the
memory of the estimator for the sample mean and covariance matrix with exponentially
decaying weights.
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Typically, when one computes the conventional sample mean, the covariances of the
sample mean vector x̄n (note: here we are talking about the covariance matrix for the
sample mean x̄n and not the estimated covariance matrix of the sample itself. This is
somewhat similar to the computation of the standard error of the mean.) will tend to zero
as the sample size n grows larger. Similarly to the standard error of the mean, which can
be expressed as

σ2
X̄ =

σ2

n
, (B.84)

the expected covariance matrix ΣX̄ is

ΣX̄ =
1

n
Σ, (B.85)

which indicates, that for a sufficiently large sample n, the estimated mean x̄n will most
likely be relatively close (under the typical conditions) to the real mean µX of the underlying
distribution.

However, if the weighted sample means and covariances are computed, this is no longer
necessarily the case. As we will see later, in the weighted case, the elements in the covariance
matrix of the sample mean will not converge towards zero in certain situations, implying
that the sample mean will not converge to the real mean. Some variance will remain in
the estimation, and increasing the sample size will not change this. In such cases, we can
say that the estimator has a ”limited memory”. This may be undesirable when estimating
stationary distributions on the one hand. On the other hand, a limited memory can make
sense if certain statistics of the underlying distribution (e.g., the means or variances) change
over time (often called concept drift or concept change), since the estimator can then forget
about the past and learn to adapt its parameters to the drifting distribution. To understand
the effects that weighted sample statistics generate, we investigate in this section how the
covariance of weighted means behave in different settings.

Let us first derive a formulation for the covariance of two weighted means X̄n and
Ȳn, which are computed for the two jointly distributed random variables X and Y. The
covariance of two jointly distributed random variables is defined as:

cov(X, Y ) = IE[(X − IE[X])(Y − IE[Y ])]

= IE[XY ]− IE[X]IE[Y ].

Then, the covariance of the two sample means X̄n and Ȳn is:

cov(X̄n, Ȳn) = cov

(∑n
i=1w

′
iXi∑n

i=1w
′
i

,

∑n
i=1w

′
iYi∑n

i=1w
′
i

)
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= cov

(
1

Wn

n∑
i=1

w′
iXi,

1

Wn

n∑
i=1

w′
iYi

)
(B.86)

with random variables Xi and Yi and where

Wn =
n∑

i=1

w′
i.

Let us assume that all weights are already normalized so that

wi =
w′

i

Wn

=
w′

i∑n
i=1w

′
i

.

Then, Eq. (B.86), simplifies to:

cov(X̄n, Ȳn) = cov

(
n∑

i=1

wiXi,
n∑

i=1

wiYi

)

= IE

[
n∑

i=1

wiXi ·
n∑

j=1

wjYj

]
− IE[X̄n]IE[Ȳn] (B.87)

Let the expected values µX̄n
= IE[X̄n] and µȲn

= IE[Ȳn] be the real means of the two jointly
distributed random variables, so that Eq. (B.87) can be written as:

cov(X̄n, Ȳn) = IE

[
n∑

i=1

wiXi ·
n∑

j=1

wjYj

]
− µX̄n

µȲn

= IE

[
n∑

i=1

n∑
j=1

wiwjXiYj

]
− µX̄n

µȲn

= IE

[
n∑

i=1

w2
iXiYj +

n∑
i=1

n∑
j=1
j ̸=i

wiwjXiYj

]
− µX̄n

µȲn
(B.88)

Note that in above Eq. (B.88), the original sum was split into two, so that the paired
(mutually dependent) data points (Xi, Yi) share the same sum. All other pairs {(Xi, Yj) | i ̸=
j} are statistically independent and can be treated differently in the following. With the
relation

IE[XY ] = IE[X]IE[Y ],
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for independent random variables X and Y, we get for Eq. (B.88):

cov(X̄n, Ȳn) = IE

[
n∑

i=1

w2
iXiYj +

n∑
i=1

n∑
j=1
j ̸=i

wiwjXiYj

]
− µX̄n

µȲn

= IE

[
n∑

i=1

w2
iXiYj

]
+ IE

[
n∑

i=1

n∑
j=1
j ̸=i

wiwjXiYj

]
− µX̄n

µȲn

=
n∑

i=1

w2
i IE[XiYj] +

n∑
i=1

n∑
j=1
j ̸=i

wiwjIE[XiYj]− µX̄n
µȲn

=
n∑

i=1

w2
i IE[XiYj] +

n∑
i=1

n∑
j=1
j ̸=i

wiwjIE[Xi]IE[Yj]− µX̄n
µȲn

. (B.89)

Since IE[Xi] = µXi
= µX̄n

and IE[Yi] = µYi
= µȲn

(the expected value of the sample mean is
the same as the expected value of each element of the sample), we can continue with

cov(X̄n, Ȳn) =
n∑

i=1

w2
i IE[XiYj] +

n∑
i=1

n∑
j=1
j ̸=i

wiwjIE[Xi]IE[Yj]− µX̄n
µȲn

=
n∑

i=1

w2
i IE[XiYj] + µX̄n

µȲn

n∑
i=1

n∑
j=1
j ̸=i

wiwj − µX̄n
µȲn

=
n∑

i=1

w2
i

[
cov(Xi, Yi) + µX̄i

µȲi

]
+ µX̄n

µȲn

n∑
i=1

n∑
j=1
j ̸=i

wiwj − µX̄n
µȲn

=
n∑

i=1

w2
i

[
cov(Xi, Yi) + µX̄n

µȲn

]
+ µX̄n

µȲn

n∑
i=1

n∑
j=1
j ̸=i

wiwj − µX̄n
µȲn

=
n∑

i=1

w2
i cov(Xi, Yi) +

n∑
i=1

w2
i µX̄n

µȲn
+ µX̄n

µȲn

n∑
i=1

n∑
j=1
j ̸=i

wiwj − µX̄n
µȲn

=
n∑

i=1

w2
i cov(Xi, Yi) + µX̄n

µȲn

n∑
i=1

w2
i + µX̄n

µȲn

n∑
i=1

n∑
j=1
j ̸=i

wiwj

︸ ︷︷ ︸
both sums can be merged again

−µX̄n
µȲn
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=
n∑

i=1

w2
i cov(Xi, Yi) + µX̄n

µȲn

n∑
i=1

n∑
j=1

wiwj − µX̄n
µȲn

=
n∑

i=1

w2
i cov(Xi, Yi) + µX̄n

µȲn

n∑
i=1

wi

n∑
j=1

wj︸ ︷︷ ︸
=1

−µX̄n
µȲn

=
n∑

i=1

w2
i cov(Xi, Yi) + µX̄n

µȲn

n∑
i=1

wi︸ ︷︷ ︸
=1

−µX̄n
µȲn

=
n∑

i=1

w2
i cov(Xi, Yi) + µX̄n

µȲn
− µX̄n

µȲn

=
n∑

i=1

w2
i cov(Xi, Yi) (B.90)

Finally, since all pairs (Xi, Yi) are independent and identically distributed (IID), we can
write:

cov(X̄n, Ȳn) =
n∑

i=1

w2
i cov(Xi, Yi)

= cov(X, Y )
n∑

i=1

w2
i . (B.91)

This simple relation that we finally derived in Eq. (B.91) will help us later to determine
the ”memory” of exponentially decaying weighted estimators.

B.2.4 Memory of the Exponentially Decaying Estimator

Due to the exponentially decaying weights, the estimator described in Sec. B.2.2 has a
limited historical memory since older observations fade out more and more with every new
data point. With such an approach, it is possible to adapt the parameters to drifting
(changing) distributions, however, at the cost of less accuracy when the data generating
process is a stationary distribution. For example, this means that for forgetting factors
λ < 1, the (co-) variances of the mean vector do not converge to zero for large sample sizes
n. There will always be some fixed amount of noise left in the estimation, depending on
the ”rate” of forgetting (specified by λ). In this section, we attempt to answer the following
question:
What is the memory nmem of an estimator with exponentially decaying weights? Hence: For
which sample size nmem, when computing the ordinary mean (without forgetting) instead,
can we obtain the same distribution parameters µX̄ and ΣX̄? In other words, we are looking
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for a corresponding ordinary estimator that only considers the last nmem data points to
compute the mean.
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Figure B.1: Comparison of the distributions of the sample means (104 samples, sampled from a uniform
distribution) for the unweighted and weighted case. The forgetting factor for the weighted estimator is set to
λ = 0.99. The unweighted estimator computes the mean for samples of size nmem = 199. Both distributions
match closely, confirming our finding regarding the memory of the exponentially decaying estimator.

Intuitively, one might assume for the second question that the sample size n for the
ordinary mean corresponds to the value of the normalization factor Wn since for large n,
Wn converges – according to

Wn =
n∑

i=1

w′
i =

n∑
i=1

λn−i =
1− λn

1− λ

– towards a fixed value (for λ < 1):

lim
n→∞

Wn = lim
n→∞

1− λn

1− λ
=

1

1− λ
.

For example, for a forgetting factor of λ = 0.99, Wn converges towards Wn = 100.
Hence, one would be tempted to assume that nmem = Wn = 100. However, if we test this
hypothesis in a small simulation, we find that memory must be larger. Hence, we have to
find another way to estimate the memory nmem. We can do this by actually computing
the covariance matrix for the weighted mean. The derivations are shown in the previous
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section, in which the following resulting equation is found:

cov(X̄n, Ȳn) =
n∑

i=1

w2
i cov(Xi, Yi)

= cov(X, Y )
n∑

i=1

w2
i .

If we extend the above equation to the setting with exponentially decaying weights, we
obtain:

n∑
i=1

w2
i =

n∑
i=1

(λn−i

Wn

)2
=

n∑
i=1

(λn−i)2

W 2
n

=
n∑

i=1

λ2(n−i)(∑n
i=1 λ

n−i
)2

=
n∑

i=1

λ2(n−i)(
1−λn

1−λ

)2 =
( 1− λ

1− λn

)2 n∑
i=1

λ2(n−i)

=
( 1− λ

1− λn

)21− λ2n

1− λ2
.

For 0 < λ < 1 and large n, the above expression converges towards

lim
n→∞

n∑
i=1

w2
i = lim

n→∞

( 1− λ

1− λn

)21− λ2n

1− λ2
=

(1− λ)2

1− λ2
.

Due to the central limit theorem (CLT), we know that the ordinary mean vector X̄n is
distributed as

X̄n ∼ N
(
µX ,

1

n
Σ
)
,

so that we have to solve the following correspondence for nmem:

Σ
1

nmem

= Σ ·
n∑

i=1

w2
i

nmem =
1∑n

i=1w
2
i

=
(1− λn

1− λ

)2 1− λ2

1− λ2n
,
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For large sample sizes n, nmem converges to:

lim
n→∞

nmem =
1− λ2

(1− λ)2
=

1− λ2

(1− λ)2
· 1 + λ

1 + λ

=
1 + λ

1− λ
· 1− λ2

(1 + λ)(1− λ)
=

1 + λ

1− λ
· 1− λ2

1− λ2

=
1 + λ

1− λ
.

For our previous example with λ = .99, this would mean that the memory of the estimator
is approx. nmem ≈ 199. The distributions of the sample means for the weighted and
unweighted estimator are visualized in Fig. B.1.

In this section, we found that the memory of the exponentially decaying estimator of
the sample mean and sample covariance has a memory of approximately:

nmem ≈
1 + λ

1− λ
. (B.92)

B.3 Relationship of the Mahalanobis Distance and the

Chi-Square Distribution

In practice, sometimes (multivariate) Gaussian distributions are used for anomaly detec-
tion tasks (assuming that the considered data is approximately normally distributed): the
parameters of the Gaussian can be estimated using maximum likelihood estimation (MLE)
where the maximum likelihood estimate is the sample mean and sample covariance matrix.
After estimating the distribution parameters, one has to specify a critical value (anomaly
threshold) that separates the normal data from the anomalous data. One possibility is, to
determine the critical value based on the probability density function (PDF). A new data
point can then be classified as anomalous if the value of the PDF for this new point is below
the critical value. In the univariate case, the boundary separates the lower and upper tails
of the Gaussian from its center (mean). For a 2-dimensional distribution, the boundary
is an ellipse around the center, and in higher dimensions, the boundary can be described
by an ellipsoid. All points on the surface of such an ellipsoid have the same Mahalanobis
distance to the center of the distribution. Hence, one can also specify a Mahalanobis dis-
tance as an anomaly threshold and separate normal and anomalous data points according
to this distance metric. Generally, the Mahalanobis distance is parameter-free and does not
require any particular assumptions about the data distribution (such as a normal distribu-
tion). However, as we will show in the following, for (roughly) Gaussian-distributed data,
the squared Mahalanobis distance follows a Chi-square distribution. This relationship can
also be verified empirically with a quantile-quantile plot.
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B.3. RELATIONSHIP OF THE MAHALANOBIS DISTANCE AND THE
CHI-SQUARE DISTRIBUTION

B.3.1 Prerequisites

B.3.1.1 Matrix Algebra

Generally, the product of a n× ℓ matrix A and a ℓ× p matrix B is defined as:

(AB)ij =
m∑
k=1

AikBkj

Then, the multiplication of a matrix A with its transpose AT can be written as:

(AAT)ij =
ℓ∑

k=1

AikA
T
kj =

ℓ∑
k=1

AikAjk,

AAT =
ℓ∑

k=1

aka
T
k , (B.93)

where ak is the kth column vector of matrix A.

B.3.1.2 Eigenvalues and Eigenvectors

When the eigenvectors of n× n matrix A are arranged in a squared n× n matrix U, where
the i-th column represents the i-th eigenvector u(i), we have:

AU = UΛ

A = UΛU−1, (B.94)

commonly referred to as eigenvalue decomposition, where Λ is a diagonal matrix containing
the eigenvalues λi of the corresponding eigenvectors. If A is a symmetric matrix, the
eigenvectors are orthogonal (orthonormal) and the matrix U is orthogonal as well (the
product with its transpose is the identity matrix). In this case U−1 = UT, and equation

(B.94) can be written as A = UΛUT. The square root of A (written here as A
1
2 ) – such

that A
1
2A

1
2 = A – can be written as:

A
1
2 = UΛ

1
2UT, (B.95)

A
1
2 ·A 1

2 = UΛ
1
2UTUΛ

1
2UT = UΛ

1
2 IΛ

1
2UT = UΛUT

= A.
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The eigenvalue decomposition of the inverse of a matrix A can be computed as follows,
using the associative property of the matrix product:

A−1 =
(
UΛU−1

)−1
=
(
U−1

)−1
Λ−1U−1 = UΛ−1U−1

= UΛ−1UT (B.96)

Note that Λ−1 is again a diagonal matrix containing the reciprocal eigenvalues of A.

B.3.1.3 Linear Affine Transform of a Normally Distributed Random Variable

If we apply a linear affine transform to a normal random variable X ∼ N (µx,Σx) with a
mean vector µx and a covariance matrix Σx, we obtain a new random variable Y :

Y = AX + b. (B.97)

One can compute the new mean µy and covariance matrix Σy for Y :

µy = IE{Y } = IE{AX + b} = AIE{X}+ b

= Aµx + b, (B.98)

Σy = IE{(Y − µy)(Y − µy)
T}

= IE{
[
(AX + b)− (Aµx + b)

][
(AX + b)− (Aµx + b)

]T}
= IE{

[
A(X − µx)

][
A(X − µx)

]T}
= IE{A(X − µx)(X − µx)TAT}
= AIE{(X − µx)(X − µx)T}AT

= AΣxA
T (B.99)

B.3.2 The Squared Mahalanobis Distance follows a Chi-Square
Distribution

In this section we prove the conjecture: ”The squared Mahalanobis distance of a Gaussian-
distributed random vector X and the center µ of this Gaussian distribution follows a Chi-
square distribution.”

B.3.2.1 Derivation Based on the Eigenvalue Decomposition

The Mahalanobis distance between two points x and y is defined as

d(x,y) =

√
(x− y)TΣ−1(x− y). (B.100)
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B.3. RELATIONSHIP OF THE MAHALANOBIS DISTANCE AND THE
CHI-SQUARE DISTRIBUTION

Thus, the squared Mahalanobis distance of a random vector X and the center µ of a
multivariate Gaussian distribution is defined as:

D = d(X,µ)2 = (X− µ)TΣ−1(X− µ), (B.101)

where Σ is a ℓ × ℓ covariance matrix and µ ∈ Rℓ is the mean vector. In order to achieve
a different representation of D one can first perform an eigenvalue decomposition on Σ−1

which is (with Eq. (B.96) and assuming orthonormal eigenvectors):

Σ−1 = UΛ−1U−1 = UΛ−1UT (B.102)

With Eq. (B.93) we obtain (cf. [15, p. 80]):

Σ−1 =
ℓ∑

k=1

λ−1
k uku

T
k (B.103)

where uk is the k-th eigenvector of the corresponding eigenvalue λk. Plugging (B.103) back
into (B.101) results in:

D = (X− µ)TΣ−1(X− µ) = (X− µ)T

(
ℓ∑

k=1

λ−1
k uku

T
k

)
(X− µ)

=
ℓ∑

k=1

λ−1
k (X− µ)Tuku

T
k (X− µ)

=
ℓ∑

k=1

λ−1
k

[
uT
k (X− µ)

]2
=

ℓ∑
k=1

[
λ
− 1

2
k uT

k (X− µ)
]2

=
ℓ∑

k=1

Y 2
k

where Yk is a new random variable based on an affine linear transform of the random vector

X. According to Eq. (B.98) , we have Z = (X − µ) ∼ N(0,Σ). If we set aT
k = λ

− 1
2

k uT
k

then we get Yk = aT
kZ = λ

− 1
2

k uT
kZ. Note that Yk is now a random variable drawn from a

univariate normal distribution Yk ∼ N(0, σ2
k), where, according to (B.99):

σ2
k = aT

k Σak = λ
− 1

2
k uT

k Σλ
− 1

2
k uk (B.104)

= λ−1
k uT

k Σuk (B.105)
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If we insert Σ =
∑ℓ

j=1 λjuju
T
j into Eq. (B.105), we get:

σ2
k = λ−1

k uT
k Σuk = λ−1

k uT
k

(
ℓ∑

j=1

λjuju
T
j

)
uk =

ℓ∑
j=1

λ−1
k uT

kλjuju
T
j uk

=
ℓ∑

j=1

λ−1
k λju

T
kuju

T
j uk

Since all eigenvectors ui are pairwise orthonormal the dotted products uT
kuj and uT

j uk will
be zero for j ̸= k. Only for the case j = k we get:

σ2
k = λ−1

k λku
T
kuku

T
kuk = λ−1

k λk||uk||2||uk||2 = λ−1
k λk||uk||2||uk||2

= 1,

since the the norm ||uk|| of a orthonormal eigenvector is equal to 1. Thus, the squared
Mahalanobis distance can be expressed as: D =

∑ℓ
k=1 Y

2
k , where Yk ∼ N(0, 1). Now the

Chi-square distribution with ℓ degrees of freedom is exactly defined as being the distribution
of a variable which is the sum of the squares of ℓ random variables being standard normally
distributed. Hence, D is Chi-square distributed with ℓ degrees of freedom.

B.3.2.2 Alternative Derivation Based on the Whitening Property of the Ma-
halanobis Distance

Since the inverse Σ−1 of the covariance matrix Σ is also a symmetric matrix, its square root
can be found – based on Eq. (B.95) – to be a symmetric matrix. In this case we can write
the squared Mahalanobis distance as

D = (X− µ)TΣ−1(X− µ) = (X− µ)TΣ− 1
2Σ− 1

2 (X− µ)

=
(
Σ− 1

2 (X− µ)
)T(

Σ− 1
2 (X− µ)

)
= YTY = ||Y||2

=
ℓ∑

k=1

Y 2
k

The multiplication Y = WZ, with W = Σ− 1
2 and Z = X − µ is typically referred to as a

whitening transform, where in this case W = Σ− 1
2 is the so called Mahalanobis (or ZCA)

whitening matrix. Y has zero mean, since (X−µ) ∼ N(0,Σ). Due to the (linear) whitening
transform the new covariance matrix Σy is the identity matrix I, as shown in the following
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(using the property in Eq. (B.99)):

Σy = WΣWT = Σ− 1
2Σ
(
Σ− 1

2

)T
= Σ− 1

2

(
Σ

1
2Σ

1
2

)(
Σ− 1

2

)T
= Σ− 1

2

(
Σ

1
2Σ

1
2

)
Σ− 1

2 =
(
Σ− 1

2Σ
1
2

)(
Σ

1
2Σ− 1

2

)
= I.

Hence, all elements Yk in the random vector Y are random variables drawn from independent
normal distributions Yk ∼ N(0, 1), which leads us to the same conclusion as before, that D
is Chi-square distributed with ℓ degrees of freedom.
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Summary

Up until today, anomaly detection in general and especially for temporal data such as
data streams or time series remains a challenging task. Nevertheless, anomaly detection in
time series is becoming increasingly important in many domains. For example, more and
more industrial machines are equipped with numerous sensors for condition monitoring and
predictive maintenance applications, which produce large amounts of data in the shortest
time. In such applications, it is crucial to continuously monitor these large data streams
and detect anomalous behavior at an early stage to prevent critical systems’ failure and
possible further damage. Also, in many other application areas (e.g., server technologies &
networking, high energy physics & astronomy, or health monitoring systems), vast amounts
of data are collected, which have to be analyzed automatically with suitable algorithms.
In this context, the necessity for accurate and robust unsupervised learning methods for
anomaly detection tasks arose.

In this thesis, we present and discuss several unsupervised anomaly detection algorithms
for time series.

Our first algorithm, called SORAD (Simple Online Regression for Anomaly Detection),
is presented in Chapter 4. SORAD learns a linear regression model to predict future values
of a time series and simultaneously estimate the prediction errors’ mean and variance. Data
points resulting in prediction errors that significantly deviate from the mean are considered
anomalous. SORAD can operate fully online (or using small batches) on any time series
after a short transient phase and adapt to changing concepts (due to the forgetting in the
linear model and the estimates of the prediction errors). On the Webscope S5 anomaly
benchmark [87] SORAD could significantly outperform other algorithms. However, it had
some shortcomings on the Numenta Anomaly Benchmark (NAB) [89], where it did not
perform well at first.

In Chapter 5, we introduced the DWT-MLEAD (Discrete Wavelet Transform with Max-
imum Likelihood Estimation for Anomaly Detection in Time Series) algorithm. This algo-
rithm’s central idea is to analyze a time series on different frequency/time scales using the
discrete wavelet transform (DWT). DWT-MLEAD (i) computes a decimating DWT using
Haar wavelets, (ii) slides a window over the individual frequency scales and estimates the
mean and covariance matrix of the collected points, and (iii) identifies unusual points based
on a Mahalanobis distance. Then (iv), the unusual points are flagged as events and passed
down the DWT-tree. Finally (v), the events of all frequency scales are aggregated at the
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original time scale and cause the algorithm to fire an anomaly if a specified threshold is
exceeded. Using this multi-scale approach, it is possible to detect short-range and also
longer-range anomalies. Initially designed as an offline algorithm, we showed that DWT-
MLEAD could also be used in online settings after a few modifications. We found that
DWT-MLEAD outperforms other state-of-the-art algorithms, the Webscope S5 and the
NAB data using only one hyperparameter setting.

The LSTM-AD algorithm, described in Chapter 6, learns to predict normal time-series
behavior using recurrent long short-term memory (LSTM) neural networks. From the gen-
eral idea, LSTM-AD is similar to SORAD. However, it extends it in several aspects: Instead
of using a simple linear regression model LSTM-AD uses a stack of LSTM layers to learn
more complicated temporal patterns. Furthermore, now 25 prediction horizons are used in-
stead of only one. The prediction errors for several prediction horizons are used to indicate
anomalous behavior (using the Mahalanobis distance of the prediction errors as anomaly
score). Several additional extensions, such as a window-based error correction and an un-
supervised outlier removal method are introduced. LSTM-AD was evaluated on the well-
known MIT-BIH ECG [52, 112, 113] data set and could obtain good initial results. Later,
in Chapter 7, even better results are found with an improved hyper-parameter selection.

In Chapter 7, the temporal convolutional network autoencoder (TCN-AE) is introduced.
The main idea is to use one TCN [13] as an encoder network and another TCN as a decoder
network. In order to create a bottleneck, the encoder downsamples the time series and
reduces its dimensionality. After the input time series is encoded into a compressed sequence,
a temporal decoder network attempts to reconstruct the original input. TCN employs
so-called dilated convolutions, which have their origin in discrete wavelet transforms and
create an exponentially increasing receptive field with only a linear increase in the number
of trainable weights. We performed our initial experiments with a relatively simple baseline
TCN-AE architecture. The baseline TCN-AE demonstrated that it could already learn
interesting representations of different Mackey-Glass time series, and it performed well on
the Mackey-Glass Anomaly Benchmark (MGAB). However, we noticed a few shortcomings,
which we addressed in the following. We showed that several extensions of the baseline
model are crucial to improving the overall performance. TCN-AE in its final form produces
significantly better results on the MIT-BIH ECG data, outperforming other state-of-the-art
algorithms. At the same time, it reduces the computation time and the number of trainable
parameters (in comparison to baseline TCN-AE).
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Samenvatting

Tot op heden blijft anomaliedetectie in het algemeen en in het bijzonder voor temporele
data zoals datastromen of tijdreeksen een uitdagende taak. Toch wordt anomaliedetectie
in tijdreeksen steeds belangrijker in vele domeinen. Zo zijn bijvoorbeeld meer en meer in-
dustriële machines uitgerust met talrijke sensoren voor conditiebewaking en predictieve on-
derhoudstoepassingen, die grote hoeveelheden data produceren in de kortst mogelijke tijd.
Bij dergelijke toepassingen is het van cruciaal belang deze grote gegevensstromen voort-
durend te bewaken en afwijkend gedrag in een vroeg stadium te detecteren om uitval van
kritische systemen en eventuele verdere schade te voorkomen. Ook in veel andere toepass-
ingsgebieden (bijv. servertechnologieën & netwerken, hoge-energiefysica & astronomie, of
systemen voor gezondheidsbewaking) worden enorme hoeveelheden gegevens verzameld,
die automatisch moeten worden geanalyseerd met geschikte algoritmen. In deze context
ontstond de noodzaak voor nauwkeurige en robuuste unsupervised learning methoden voor
anomaliedetectie.

In dit proefschrift presenteren en bespreken we verschillende algoritmes voor onbewaakte
anomaliedetectie voor tijdreeksen.

Ons eerste algoritme, genaamd SORAD (Simple Online Regression for Anomaly De-
tection), wordt gepresenteerd in Hoofdstuk 4. SORAD leert een lineair regressiemodel om
toekomstige waarden van een tijdreeks te voorspellen en schat tegelijkertijd het gemiddelde
en de variantie van de voorspelfouten. Gegevenspunten met voorspelfouten die significant
anders zijn van het gemiddelde worden als afwijkend beschouwd. SORAD kan volledig on-
line (of met kleine batches) werken op elke tijdreeks na een korte transiënte fase en zich
aanpassen aan veranderende concepten (als gevolg van het vergeten in het lineaire model
en de schattingen van de voorspelfouten). Op de Webscope S5 anomalie benchmark [87]
kon SORAD aanzienlijk beter presteren dan andere algoritmen. SORAD vertoonde echter
tekortkomingen op de Numenta Anomaly Benchmark (NAB) [89], waar het aanvankelijk
niet goed presteerde.

In hoofdstuk 5 hebben we het DWT-MLEAD (Discrete Wavelet Transform with Max-
imum Likelihood Estimation for Anomaly Detection in Time Series) algoritme gëıntro-
duceerd. Het centrale idee van dit algoritme is het analyseren van een tijdreeks op ver-
schillende frequentie/tijdschalen met behulp van de discrete wavelet-transformatie (DWT).
DWT-MLEAD (i) berekent een decimerende DWT met gebruikmaking van Haar wavelets,
(ii) schuift een venster over de afzonderlijke frequentieschalen en schat het gemiddelde en

181



de covariantiematrix van de verzamelde punten, en (iii) identificeert ongebruikelijke pun-
ten op basis van een Mahalanobis-afstand. Dan (iv) worden de ongebruikelijke punten
gemarkeerd als gebeurtenissen en door de DWT-boom geleid. Tenslotte (v) worden de
gebeurtenissen van alle frequentieschalen samengevoegd op de oorspronkelijke tijdschaal en
zorgt het algoritme ervoor dat een anomalie wordt afgevuurd als een gespecificeerde drempel
wordt overschreden. Door gebruik te maken van deze multischaalbenadering is het mogelijk
anomalieën op korte en ook op langere termijn te detecteren. DWT-MLEAD was in eerste
instantie ontworpen als offline algoritme, maar na enkele aanpassingen is gebleken dat het
ook in een online omgeving kan worden gebruikt. We ontdekten dat DWT-MLEAD beter
presteert dan andere state-of-the-art algoritmen op de Webscope S5 en de NAB data met
slechts één hyperparameter instelling.

Het LSTM-AD algoritme, beschreven in Hoofdstuk 6, leert normaal tijdreeksgedrag te
voorspellen met behulp van recurrente long short-term memory (LSTM) neurale netwerken.
Het algemene idee in LSTM-AD is vergelijkbaar met dat van SORAD. Het breidt het echter
op verschillende punten uit: In plaats van een eenvoudig lineair regressiemodel te gebruiken,
gebruikt LSTM-AD een stapel LSTM-lagen om meer ingewikkelde temporele patronen te
leren. Bovendien worden nu 25 voorspellingshorizonnen gebruikt in plaats van slechts één.
De voorspellingsfouten voor verschillende voorspellingshorizonten worden gebruikt om af-
wijkend gedrag aan te geven (waarbij de Mahalanobis-afstand van de voorspellingsfouten
als anomaliescore wordt gebruikt). Verschillende extra uitbreidingen, zoals een venster-
gebaseerde foutcorrectie en een niet gesuperviseerde methode voor het verwijderen van
uitschieter worden gëıntroduceerd. LSTM-AD werd geëvalueerd op de bekende MIT-BIH
ECG-gegevensset en kon goede eerste resultaten behalen. Later, in hoofdstuk 7, worden
nog betere resultaten gevonden met een verbeterde hyper-parameter selectie.

In hoofdstuk 7 wordt de Temporal Convolutional Network Autoencoder (TCN-AE)
gëıntroduceerd. Het hoofdidee is om een TCN [13] te gebruiken als encoder netwerk en
een ander TCN als decoder netwerk. Om een knelpunt te creëren, wordt in de encoder de
tijdreeks gedownsamplesed en de dimensionaliteit gereduceerd. Nadat de ingevoerde tijd-
reeks is gecodeerd tot een gecomprimeerde reeks, tracht een temporaal decodernetwerk de
oorspronkelijke invoer te reconstrueren. TCN maakt gebruik van zogenaamde gedilateerde
convoluties, die hun oorsprong vinden in discrete wavelet transformaties en een exponentieel
toenemend receptief veld creëren met slechts een lineaire toename van het aantal trainbare
gewichten. Wij hebben onze eerste experimenten uitgevoerd met een relatief eenvoudige ba-
sis TCN-AE architectuur. De baseline TCN-AE toonde aan dat het al interessante represen-
taties van verschillende Mackey-Glass tijdreeksen kon leren, en dat het goed presteerde op de
Mackey-Glass Anomaly Benchmark (MGAB). We merkten echter een paar tekortkomingen
op, die we in die we in later onderzoek hebben aangepakt. We toonden aan dat verschil-
lende uitbreidingen van het basismodel van cruciaal belang zijn om de algemene prestaties
te verbeteren. TCN-AE in zijn uiteindelijke vorm levert significant betere resultaten op op
de MIT-BIH ECG data, en presteert beter dan andere state-of-the-art algoritmen. Tegeli-
jkertijd vermindert het de rekentijd en het aantal trainbare parameters (in vergelijking met
baseline TCN-AE).
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